Contribution ID: 172 Type: talk

Search for charged Higgs bosons decaying via $H^\pm \to \tau^\pm \nu_\tau$ in the τ +jets and τ +lepton final states in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment

Tuesday, 13 July 2021 15:00 (15 minutes)

Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^\pm \to \tau^\pm \nu_\tau$, are searched for in $36.1 {\rm fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the associated top-quark decays hadronically or leptonically, the search targets τ +jets and τ +lepton final states. In both cases, the τ -lepton decays hadronically. No evidence of a charged Higgs boson is found. For the mass range of $m_{H^\pm}=90$ -2000 GeV, upper limits at the 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction ${\rm calB}(H^\pm \to \tau^\pm \nu_\tau)$ in the range 4.2-0.0025 pb. In the mass range 90-160 GeV, assuming the Standard Model cross-section for $t\bar{t}$ production, this corresponds to upper limits between 0.25% and 0.031% for the branching fraction ${\rm calB}(t \to bH^\pm) \times {\rm calB}(H^\pm \to \tau^\pm \nu_\tau)$. In the newest iteration of the search, the mass range has been extended to $m_{H^\pm}=80$ -3000 GeV and novel machine learning techniques have been developed to sift through $139~{\rm fb}^{-1}$ of data. A parameterized neural network (PNN) is trained across the entire mass spectrum to provide signal-background discrimination in τ +jets or τ +lepton final states.

Are you are a member of the APS Division of Particles and Fields?

Yes

Primary author: PARRISH, Elliot (Northern Illinois University)

Presenter: PARRISH, Elliot (Northern Illinois University)Session Classification: Beyond Standard Model

Track Classification: Beyond Standard Model Physics