Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

<u>Meng-Ju Tsai</u>

University of Michigan On behalf of the ATLAS Collaboration

Motivation

- Evidence for SM $t\bar{t}t\bar{t}$ production in the same-sign dilepton and multilepton (SSML) final states was achieved \rightarrow observed cross section: $\sigma_{t\bar{t}t\bar{t}} = 24^{+7}_{-6}$ fb (twice of expectation!)
- This analysis searches for the heavy Higgs boson in top-associated production mode $(t\bar{t}H/A \rightarrow t\bar{t}t\bar{t})$ from the 2HDM model in the same SSML final state
- Sensitive to the low $\tan\beta$ region with small interference with SM background
 - $A \rightarrow t\bar{t}$ decay mode dominates at the low $\tan \beta$ region (so does $H \rightarrow t\bar{t}$ in the alignment limit)

Analysis overview

- Analysis strategy based on the SM $t\bar{t}t\bar{t}$ analysis (paper) with additional upgrades
 - Improved jet reconstruction (particle flow algorithm) and neural net based btagging algorithm
 - Multivariate analysis (sequential BDTs) to extract BSM signals
- Main challenges
 - Small signal cross sections and background modeling in extreme kinematic regions
 - Hard to extract BSM $t\bar{t}t\bar{t}$ from highly irreducible ttV and SM $t\bar{t}t\bar{t}$

Analysis strategy

Preselection

Both SS and ML, ≥ 1 b-tagged jet at 77% WP

✓ Signal background separation

• Events with $N_{jets} \ge 6$, $N_{b-jets} \ge 2$ and $H_T = \sum p_T^{\ell} + \sum p_T^j \ge 500$ GeV are signal-enriched phase space (baseline SR) in which is used for SM BDT and BSM parametrized-BDT (pBDT) training with XGBoost

Statistical analysis

- In data-blinded stage, estimate the normalization factor for backgrounds with unblinded CRs in the template fit
- Simultaneous fit of CRs and SRs with post-fit background model to get limits on the cross section for the BSM signals

Backgrounds in SSML changed v

- Physics processes: (~75%)
 - SM *tttt* (constrained to SM with 20% theory uncert.)
 - $t\bar{t}W$ NLO QCD (**MC corrected to data**)
 - $t\bar{t}Z$, $t\bar{t}H$ and minor processes (fully taken from MC)
- Instrumental and fake backgrounds: (~25%)
 - Charge mis-identification (data-driven method)

τττ

[[[])X

ππ

- Non-prompt leptons from heavy-flavor decays and photon conversion (MC corrected to data in CRs)
- Fake leptons from light mesons and quark/gluon jets, and minor backgrounds (fully taken from MC)

Sequential BDT strategy - SM BDT

- SM BDT is trained with SM tttt
 tttt

 against SM backgrounds using XGBoost package
- Discriminate *tttt*-like events from SM background
 - Low SM BDT region for background modeling
 - High SM BDT region for BSM signal extraction

Fake and $t\bar{t}W$ background estimation

- Template fit to data in 5 control regions to estimate the normalization factors of $t\bar{t}W$ and fake backgrounds
- Low BDT control region was included to make the background modeling close to the unblinding fit setup → unblind bins where signal contamination < 5% (SM BDT < 0.25) in the template fit

Meng-Ju Tsai (UMich)

DPF 2021: 13 July 2021

$t\bar{t}W$ validation region

- $t\bar{t}W$ validation region: difference between positively and negatively charged leptons ($N_{++} N_{--}$) with selection $N_{\text{jets}} \ge 4$ and $N_{\text{b-jets}} \ge 2$ (no H_T selection)
- Large Data/MC discrepancy in the high $N_{\rm jets}$ region \rightarrow derive large uncertainty for $t\bar{t}W$
 - Working in progress to update the ttW QCD+EW NLO samples

Introduction to parameterized BDT

 Idea of pBDT is from parameterized neural network (<u>ArXiv:1601.07913</u>)

merged signals against all SM backgrounds

Sequential BDT strategy - BSM pBDT

- BSM pBDT is trained with merged BSM tttt and SM backgrounds using XGBoost package
 - Reweigh background contribution to mimic the high SM BDT region in the training
 - SM BDT is used as input variable for BSM pBDT

DPF 2021: 13 July 2021

Meng-Ju Tsai (UMich)

Expected sensitivity

- About 75% stronger than ATLAS 36 fb⁻¹ SSML+b-jets analysis (paper)
 - Expected 50% stronger with statistical improvement (4 times more statistics, limits decrease by a factor of 2)
- Exclusion of $\tan \beta = 1$ for mH < 650 GeV and exclusion of $\tan \beta = 0.5$ for mH < 1000 GeV

Meng-Ju Tsai (UMich)

Summary and outlook

- Mass parameterized BDT is used to extract BSM signals in tttt enriched phase space
 - Same performance between pBDT and BDT at each mass point
- Work in progress to improve modeling of SM backgrounds ($t\bar{t}W$, SM $t\bar{t}t\bar{t}$, ...)
 - Plan to update with $t\bar{t}WQCD+EW$ NLO samples to have better description in the high $N_{\rm jets}$ region

Meng-Ju Tsai (UMich)

Object selection

- Trigger and object definitions are inherited from SM $t\bar{t}t\bar{t}$ analysis
- Single lepton and di-lepton triggers are used
- Same object definitions but changing to PFlow jets and DL1r b-tagging

Ntuple production with AnalysisBase 21.2.120

	Ta	able 13: Overlap removal procedure
Reject	Against	Criteria
Electron	Electron	shared track, $p_{T,1} < p_{T,2}$
Muon	Electron	is Calo-Muon and shared ID track
Electron	Muon	shared ID track
Jet	Electron	$\Delta R < 0.2$
Electron	Jet	$\Delta R < 0.4$
Jet	Muon	NumTrack < 3 and (ghost-associated or $\Delta R < 0.2$)
Muon	Jet	$\Delta R < \min(0.4, 0.04 + 10 \text{GeV}/p_{\mathrm{T}}(\mu))$

Object	Elect	Electrons		Muons	Jets	b-jets	E_T^{miss}
	Loose	Tight	Loose	Tight			
$p_T \; [\text{GeV}]$	> 10	> 28	> 10	> 28	> 25	> 25	$-\sum$ (calib. lep & jet & non-matched tracks at PV)
$ \eta $	< 1.37 or	1.52 - 2.47		< 2.5	< 2.5	< 2.5	
ID quality	mediumLH ECIDS $(ee, e\mu)$	tightLH ECIDS $(ee, e\mu)$		medium	Anti- k_t (R=0.4) EMPFlow with Jet cleaning + JVT tight	DL1r 77% (CDI: 2020-03-11-Sh228_v3)	Calo-based (Tight WP)
Isolation	none	FCtight	none	FCTightTrackOnly			
$\begin{array}{ c c } & \text{Track vertex:} \\ & d_0/\sigma_{d_0} \\ & \Delta z_0 \sin \theta \end{array}$	< < 0.5	5 mm		< 3 $< 0.5 \mathrm{mm}$			

Template fit method

• Fit to data in CRs to estimate the ttW and fake backgrounds

- Simultaneously free float the NFs of backgrounds with shape from MC in a fit to data to correct the background estimation
- 5 Normalization factors: fake electron from HF (HFe), fake muon from HF (HF μ), material conversion (Mat CO), virtual photon conversion (γ^*) and $t\bar{t}W$
- CRIowBDT was included in the template fit in the SM 4top analysis to make the background modeling close to the unblinding fit setup → unblind bins where signal contamination < 5%
 (SM BDT < 0.25) in this region and include in the template fit

Region	Channel	N _{jets}	N _{b-jets}	other selection	Fitted variable
CBttherCO	SSaall SSam	1 < N < 6	<u>> 1</u>	$0 < M_{ee} @ConvV < 0.1$	$M_{ee}@PV$
CKIIDalCO	55ee 55em	$4 \leq N_j < 0$	21	$200 < H_{\rm T} < 500$	
CR1b3Le	eee eem		= 1	$100 < H_{\rm T} < 250$	1 bin
CR1b3Lm	emm mmm		= 1	$100 < H_{\rm T} < 250$	1 bin
				$M_{ee} < 0 \text{ or } M_{ee} > 0.1, \eta(e) < 1.5$	
CRttW2L	SSem SSmm	≥ 4	≥ 2	for $N_{\rm b} = 2$, $H_{\rm T} < 500$ or $N_{\rm j} < 6$	$\sum p_T(lep)$
				for $N_{\rm b} \ge 3, H_{\rm T} < 500$	
CRlowBDT	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500$, SM BDT < 0.55	SM BDT
BSM SR	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500$, SM BDT ≥ 0.55	BSM pBDT

Currently Included in the template fit

* M_{ee} @ ConvV(@PV) is defined as the invariant mass between the track associated to e and the closest track at conversion (primary) vertex † In the template fit, SM BDT < 0.25 is included in the fit. In the realistic Asimov fit, SM BDT < 0.55 is included

Input variable for SM BDT and BSM pBDT

- Input variable of SM BDT inherited from SM 4top analysis with additionally decorrelating the sum of continuous btagging scores into two variables to have better separation between 4top-like events and $t\bar{t}W \ge 7$ -jet events
- SM BDT is used in BSM pBDT training

MVA strategies	BDTs used	Samples used	Parametrized
Sequential BDT	SM BDT	SM 4top vs. bkg	×
	BSM pBDT	Merged BSM vs. SM 4top (& bkg)	\checkmark

Fit setup

Plain Asimov Fit: (S+B and SRCR with Asimov data)

 Probe sensitivity (limits) and expected constraints on fitted variables based on pre-fit background model

Real data CRs-Only Fit: (BOnly and unblinded CROnly, fit with real data)

- Derive a "close-to-final" post-fit background estimation w/o looking at data in SR
- Template fit method: CRttbarCO, CR1b3Le, CR1b3Lm, CRttW2L
- **V** Realistic Asimov Fit: (S+B and SRCR with Asimov data with $\mu_{BSMt\bar{t}t\bar{t}}$ free-floating with nominal set to 0)
 - Use pseudo-data corresponding to post-fit background prediction from Real CRs-Only fit
 - Obtain the "close-to-final" values of sensitivity (limits), NP pulls and constraints w/o looking at data in any regions

Fit setup	Control regions	Signal regions	Fitted parameters	$\mu_{ m BSMt\bar{t}t\bar{t}}$	Purpose
Plain Asimov	MC	MC	$lpha_{ ext{PlainAsimov}}$	free [µ=0]	expected constraints
					and sensitivity
Real CRs-Only	data	not included	$\alpha_{\mathrm{CRs-Only}}$	not included	post-fit bkg
Realistic Asimov	$MC[\alpha_{CRs-Only}]$	$MC[\alpha_{CRs-Only}]$	$lpha_{ m RealisticAsimov}$	free [µ=0]	expected sensitivity
					(post-fit bkg injected)
					T & LAFLNI

Systematic uncertainties

- Hard to separate SM *tītī*, 3top and *tīW* ≥ 8 jets events from BSM *tītī* signals
- Large impact from SM *tttt*,
 3top and *ttW* ≥ 8 jets related systematic uncertainties

DPF 2021: 13 July 2021