Electroweak pMSSM reinterpretation of ATLAS searches for SUSY

Nupur Oza Division of Particles and Fields 2021 July 12th, 2021

1

Electroweak pMSSM

SUSY predicts SM partners with a spin that —— differs by half a unit

- Addresses the hierarchy problem
- Lightest SUSY particle (LSP) is a viable dark matter candidate in R-parity conserving SUSY

→ EWK fermionic particles

- Neutral bino : partner of the weak hypercharge field U(1)
- Winos : partners of the W bosons SU(2)_L
- **Higgsinos** : partners of the higgs field's degrees of freedom

MSSM \rightarrow phenomenological MSSM (pMSSM)

- Assumes no CP violation, no flavor changing neutral currents, and first- and second-generation universality
- Reduces >100 to 19 parameters that influence SUSY particle masses and decays

Electroweak pMSSM

EWK pMSSM parameters

- \mathbf{M}_1 : bino mass parameter
- M₂ : wino mass parameter
- $\boldsymbol{\mu}$: bilinear higgs mass parameter
- $tan\beta$: ratio of the two higgs vacuum expectation values

pMSSM analysis for LHC Run 1 dataset^[1] in ATLAS studied

- M₁ ∈ [0 GeV, 4 TeV]
- M₂ ∈ [70 GeV, 4 TeV]
- $\mu \in [80 \text{ GeV}, 4 \text{ TeV}]$
- $tan\beta \in [1, 60]$

Motivation

No evidence of SUSY ?

- Naturalness suggests that the lightest electroweakinos should be accessible by current LHC searches
- Current LHC searches assume a 100% branching ratio for targeted decay chains to set mass limits

Goals:

- 1. Determine the dependence of the branching ratios of electroweakinos on pMSSM parameters
- 2. Restate mass limits from ATLAS searches that use a "simplified" model in terms of the pMSSM

Model

Chargino and neutralino production in the wino/bino+ scenario

Bino-like LSP, wino-like next lightest SUSY particle (NLSP)

• $M_1 < M_2 << \mu$

"Simplified" searches assume a purely-bino LSP, purely-wino NLSP:

3 lepton (3*l*) final state search^[2]

- on-shell WZ mediated decay
- LSPs/neutrino \rightarrow large E_T^{miss}
- Selection assumes $BR(C1 \rightarrow N1 + W)$, $BR(N2 \rightarrow N1 + Z) = 1.00$

1 lepton 2 *b*-jet (1*lbb*) final state search^[3]

- LSPs/neutrino \rightarrow large E_T^{miss}
- Selection assumes $BR(C1 \rightarrow N1 + W)$, $BR(N2 \rightarrow N1 + h) = 1.00$

EWK Parameter Scan

Used SOFTSUSY 4.1.7^[4] to generate electroweakino branching ratios from pMSSM parameters

Scan details:

- $M_1 \in [100, 1000]$ GeV in steps of 100 GeV
- **M**₂ ∈ (M1, 1000] GeV in steps of 100 GeV
- $\mu \in (M1, 3000]$ GeV in steps of 100 GeV
- $tan\beta \in \{10, 50\}$

Considered only on-shell electroweakino decays

Results – Neutralino2 Branching Ratios

N2, C1 mass degenerate on-shell N2 \rightarrow W + C1 forbidden

X-axis: N2, N1 mass splitting

 M_1/M_2 noncontinuous \rightarrow Stepwise structure $\mu \rightarrow$ Vertical structure

Results – Chargino1 Branching Ratios

ATLAS Exclusion Contours

- Scaled excluded cross-section values observed (overlaid points) by BR(N2 \rightarrow Z/h) 1.
- Compared ^ to the upper-limit signal production cross section for each mass point 2.

Results – Reinterpreted Exclusion Limits

on-shell N2 \rightarrow *h* + LSP forbidden

C1/N2 mass exclusions drop by >100 GeV !

BR(N2) Dependence on μ

Previously, only $\mu > 0$ was considered...

- no MSSM constraints on the sign of $\boldsymbol{\mu}$

Now μ < 0 will be studied,

Scan Details:

- $\mathbf{M}_1 \in \{100\} \, \mathrm{GeV}$
- **M**₂ ∈ {600, 1000} GeV
- μ \in [-10, 10] TeV in steps of 100 1000 GeV where $|\mu|{>}1000$ GeV
- tanβ = {30}

Conclusions

For $0 < M_1 < M_2 < \mu$, **BR(N2** \rightarrow **Z** + LSP) \leq **0.30** and **BR(N2** \rightarrow **h** + LSP) \gtrsim **0.70**

- BR(C1 \rightarrow W + LSP) = 1.00 consistent with simplified assumptions
- 0.30 BR(N2 \rightarrow Z + LSP) for the 3*l* analysis reduces excluded C1/N2 masses by ~225 GeV
- 0.70 BR(N2 \rightarrow h + LSP) for the 1*lbb* analysis reduces excluded C1/N2 masses by ~115 GeV

However, BR(N2) is highly dependent on the sign of μ

Future considerations :

- Model space where M_1 and M_2/μ have opposite signs within wino/bino scenario $|M_1| < |M_2| < |\mu|$
- Decays involving off-shell bosons

pMSSM space will become more important with LHC Run 3 and HL-LHC and will better inform the direction of future searches and the comparison of reach for future colliders

Results – Neutralino Branching Ratios

Results – tanβ

17