Lorentz violation in the quark sector

n.sherrill@sussex.ac.uk

of the American Physical Society (DPF2021)

July 14, 2021

Symmetry and symmetry breaking

• A system possesses a symmetry if it is unchanged under some action

• Fundamental physics is rooted in symmetries

Example: SM symmetries $G_{\text{gauge}} \times G_{\text{Poincar\'e}}$

• Symmetries are a guiding principle, but often Nature prefers to break them

Examples: C, P, T, SU(2)_I, gauge symmetry, ...; CPT, Lorentz symmetry (?)

Symmetry and symmetry breaking

• The past two decades have seen an explosion of interest in Lorentz and CPT tests

$$\mathcal{L}_{\mathrm{LV}} \sim \frac{\lambda}{M^k} \langle T \rangle \cdot \bar{\psi} \Gamma(i\partial)^k \chi + \mathrm{h.c.}$$

V. A. Kostelecký, S. Samuel (1989)

V. A. Kostelecký, R. Potting (1991, 1995)

• These terms have special properties

$$\mathcal{L}_a\supset -a_{\mu}ar{\psi}\gamma^{\mu}\psi$$

$$[a_{\mu}]=\mathrm{GeV}$$

• Background breaks rotation invariance

The Standard-Model Extension (SME)

• The Lorentz- and CPT-violating framework grounded in effective field theory is the Standard-Model Extension (SME)

D. Colladay, V. A. Kostelecký, (1997, 1998)

V. A. Kostelecký, (2004)

$$S_{\rm SME} = S_{\rm SM} + S_{\rm GR} + S_{\rm LV}$$

$$\mathcal{L}_{ ext{LV}} = \sum_{i} k_{i\mu
u}...\mathcal{O}_{i}^{\mu
u}...$$

- Numerous constraints have been placed to date
- The QCD and electroweak sectors are very unexplored!

Contains <u>all possible</u> terms that break Lorentz and CPT symmetry consistent with the particle/field content of the SM and GR

CPTV implies LV in realistic EFT

O. W. Greenberg, (2002)

Table D40. Gluon sector, d = 4

Combination	Result	System	Ref.
$ k^{TT} $	$< 10^{-21}$	Various	[291]*
$ k^{TJ} $	$< 10^{-19}$	"	[291]*
$ k^{JK} $	$< 10^{-27}$	"	[291]*
$ k^{XX} , k^{YY} $	$< 10^{-27}$	"	[291]*
$ k^{ZZ} $	$< 10^{-20}$	"	[291]*
$ k^a $ for $a = 1, 2, 8, 9, 10$	$< 10^{-34}$	Astrophysics	s [291]*
$ k^a $ for $a = 3, 4, 5, 6, 7$	$< 10^{-35}$	"	[291]*
$ ilde{\kappa}_{ m tr}^{ m QCD} $	$<2\times10^{-13}$	"	[171]*

Data Tables for Lorentz and CPT Violation, V. A. Kostelecký, N. Russell, arXiv:0801.0287v14

Prospective HERA and EIC bounds

• Deep inelastic scattering (DIS) has been studied in the context of HERA and EIC data

V. A. Kostelecký, E. Lunghi, A. R. Vieira, (2017)

E. Lunghi, N. Sherrill, (2018)

• Dominant renormalizable effects for massless valence quarks

$$\mathcal{L} = \sum_{f=u,d} \frac{1}{2} \bar{\psi}_f (\eta^{\mu\nu} + c_f^{\mu\nu} + \gamma_5 d_f^{\mu\nu}) \gamma_\mu i \overset{\leftrightarrow}{D}_\nu \psi_f$$

Main results

- Best expected constraints at 10⁻⁵-10⁻⁶ levels
- Expected EIC constraints up to two orders of magnitude more stringent than expected constraints from HERA data
- Unpolarized electromagnetic exchange independent of parity-violating effects (see Z pole in the Drell-Yan process @ LHC)

Sidereal analysis of HERA data *in progress*E. Lunghi, N. Sherrill,
ZEUS Collaboration

E. Lunghi, N. Sherrill, A. Szczepaniak, A. R. Vieira, (2021)

Lorentz- and CPT-violating parton model

• Standard partonic picture at large energies:

$$k^{\mu} \simeq \xi p^{\mu}$$

Do Lorentz-violating effects change this picture?

V. A. Kostelecký, E. Lunghi, N. Sherrill, A. R. Vieira, (2020)

• Quarks modified by Lorentz- and CPT-violating operators

$$\mathcal{L}_{\psi} = \frac{1}{2} \bar{\psi} (\gamma^{\mu} i D_{\mu} + \widehat{\mathcal{Q}}) \psi + \text{h.c.} \qquad \text{V. A. Kosteleck\'y, M. Mewes, (2013)}$$

$$\frac{1}{2} \bar{\psi} \widehat{\mathcal{Q}} \psi \supset - a^{\mu} \bar{\psi} \gamma_{\mu} \psi - b^{\mu} \bar{\psi} \gamma_{5} \gamma_{\mu} \psi + \cdots$$

$$+ c^{\mu \nu} \bar{\psi} \gamma_{\mu} i D_{\nu} \psi + d^{\mu \nu} \bar{\psi} \gamma_{5} \gamma_{\mu} i D_{\nu} \psi + \cdots$$

$$- a^{(5)\mu \alpha \beta} \bar{\psi} \gamma_{\mu} i D_{(\alpha} i D_{\beta)} \psi + \cdots$$

Lorentz- and CPT-violating parton model

• Explicit calculations carried out for spin-independent and flavor-diagonal effects

$$\mathcal{L} = \sum_{f=u,d} \frac{1}{2} \bar{\psi}_f i \gamma^{\mu} \stackrel{\leftrightarrow}{D}_{\mu} \psi_f + \frac{1}{2} c_f^{\mu\nu} \bar{\psi}_f \gamma_{\mu} i \stackrel{\leftrightarrow}{D}_{\nu} \psi_f - \frac{1}{2} a_f^{(5)\mu\alpha\beta} \bar{\psi}_f \gamma_{\mu} i D_{(\alpha} i D_{\beta)} \psi_f + \text{h.c.}$$

Modified Dirac equation and dispersion relation

$$\left[(\eta^{\mu\nu} + c_f^{\mu\nu}) \gamma_{\mu} i \partial_{\nu} - a_f^{(5)\mu\alpha\beta} \gamma_{\mu} i \partial_{\alpha} i \partial_{\beta} \right] \psi_f = 0$$

$$\widetilde{k}^2 = k^2 + \mathcal{O}(\text{coefficients}) = 0$$

 $\Rightarrow E^2 = |\vec{k}|^2 + \mathcal{O}(\text{coefficients})$

• Consequence: standard parton-model relation no longer holds

$$k^{\mu} \neq \xi p^{\mu}$$

• Factorization requires the following *covariant* relationship

$$\widetilde{k}^{\mu}=\xi p^{\mu}$$

Resulting factorization theorems for DIS and Drell-Yan are consistent with the OPE and Ward identities

Constraints for DIS and DY process

Comparisons between DIS and DY

	EIC	LHC	
$ c_u^{XX} - c_u^{YY} $	0.37	15	
$ c_u^{XY} $	0.13	2.7	$\times 10^{-5}$
$ c_u^{XZ} $	0.11	7.3	X 1 U
$ c_u^{YZ} $	0.12	7.1	
$ a_{Su}^{(5)TXX} - a_{Su}^{(5)TYY} $	2.3	0.015	
$ a_{\mathbf{S}u}^{(5)TXY} $	0.34	0.0027	<i>C</i> 1
$ a_{\mathbf{S}u}^{(5)TXZ} $	0.13	0.0072	$\times 10^{-6} \text{ GeV}^{-1}$
$ a_{\mathrm Su}^{(5)TYZ} $	0.12	0.0070	

• Renormalizable effects more sensitive to DIS at the EIC; nonrenormalizable more sensitive to DY at the LHC

$$\sigma_d \propto (\text{coefficient}) \times (E_{\text{collider}})^{d-4}$$

Conclusions and outlook

• We developed a framework for studying quark-sector Lorentz and CPT violation in collider processes

- Extracted simulated and real constraints on renormalizable and nonrenormalizable coefficients for Lorentz and CPT violation at existing and future colliders
- Analysis of HERA neutral-current data w/ZEUS collaboration underway
- Kinematic reach and increased luminosity of future colliders, e.g. the FCC, will improve constraints over HERA/LHC by several orders of magnitude

See, e.g., A. Michel & M. Sher (2019)

• Many new theoretical and experimental opportunities available — a great time to get involved!