

Search for CP violation and measurement of branching fraction for SCS decay $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^$ at Belle experiment APS DPF Meeting 2021 Aman Sangal, Alan Schwartz University of Cincinnati

Motivation:

- In Standard Model framework, charm meson decays are expected to have very small CP violation, $O(10^{-3})$ or smaller [1]
- CP violation measurement significantly deviating from SM expectation will probe new physics.
- Singly Cabibbo suppressed (SCS) charm decays are expected to be uniquely sensitive to new physics effects. [1]
- First experimental observation of CP violation in SCS charm mesons was made recently by LHCb. [2]
- In this analysis, we will search for CP violation in the SCS charm meson decay $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$
- We will also measure the branching fraction for this decay mode. (previously measured by BESIII)

[1] (yuval grossman, et al. Phys.Rev.D 75 (2007), 036008)
[2] LHCb Collaboration Phys.Rev.Lett. 122 (2019) 21, 211803

CP violating observable:

- We measure the CP violation using T-odd triple product (TP) asymmetries:
 - $C_T=~ec{p}_{K^0_S}\cdot(ec{p}_{\pi}+ imesec{p}_{\pi}-)~$ (K o_s with higher momentum is used)
 - For D^0 decays, T-odd triple product asymmetry A_T is defined as :
 - $A_T = \frac{N_1 (C_T > 0) N_2 (C_T < 0)}{N_1 (C_T > 0) + N_2 (C_T < 0)}$
 - For \overline{D}^0 decays, CP conjugate observables: $A_T \xrightarrow{CP} \overline{A}_T$, $C_T \xrightarrow{C} \overline{C}_T \xrightarrow{P} \overline{C}_T$

•
$$\bar{A}_T = \frac{N_3 (-\bar{C}_T > 0) - N_4 (-\bar{C}_T < 0)}{N_3 (-\bar{C}_T > 0) + N_4 (-\bar{C}_T < 0)}$$

- The difference $a_{CP}^{T-odd} = \frac{1}{2}(A_T \overline{A}_T)$ is a true CP violating observable.
- The observable a_{CP}^{T-odd} is independent of effects from strong phases. Michael Gronau et.al PRD,495 84(9), Nov 2011.
- T-odd searches for CP violation differ from direct CP violation searches as they do not require a non-vanishing CP conserving strong phase difference between the contributing amplitudes.
 <u>A. Datta</u> et.al, Int.J.Mod.Phys.A 19 (2004), 2505-2544
- By construction, a_{CP}^{T-odd} is mostly unaffected by production and detection related asymmetries.

- I. I. Y. Bigi. Charm physics: Like Botticelli in the Sistine Chapel.
- Michael Gronau et.al PRD,495 84(9), Nov 2011.

Search for CP violation using a_{CP}^{T-odd} in D decays :

Belle detector and data sample:

- KEKB accelerator: collides 8 GeV e^- with 3.5 GeV e^+ . (https://lib506extopc.kek.jp/preprints/PDF/1995/9524/9524007.pdf)
- Belle detector is situated at collision point of KEKB accelerator. (Nucl.Instrum.Meth.A 479 (2002), 117-232)
- Belle detector had:
 - good PID

(96.6 % π identification efficiency for this study)

- good vertexing capability
 (important for reconstructed mass resolution)
- For this analysis we will use data sample corresponding to $922 \ {\rm fb}^{-1}$ integrated luminosity.
- Data is collected at e⁺e⁻ COM energy equal to Y(4S),
 60 MeV below Y(4S) and Y(5S) resonances.
- We perform a blind analysis:
 - Optimize all selection criteria using simulation before looking at signal region in real data.

Reconstruction of decay at Belle detector

- Reconstructed decay chain and the corresponding selection criteria are summarized in the figure on right.
- In case of multiple candidate events, we choose a single candidate corresponding to the highest value for $\sum \chi^2 / \text{ndf}$ of D^* , D^0 and K_s^0 vertex fit.
- We get a reconstruction efficiency of 6.87% for $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$
- We apply same set of selection cuts for normalization channel $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ and obtain a reconstruction efficiency of 14.97 %

Branching fraction measurement

Signal extraction for BF measurement:

- $D^0 \rightarrow K^0_s K^0_s \pi^+ \pi^-$:
 - To extract the signal events from data sample we have used a 2d unbinned extended maximum likelihood fit in variables: $M_{D^0}[M(K_s^0K_s^0\pi^+\pi^-)]$ and $\Delta M[M(K_s^0K_s^0\pi^+\pi^-\pi_{slow}^+) M(K_s^0K_s^0\pi^+\pi^-)]$
 - Fit results from **Belle Simulation**:

Details on signal and background pdf in backup slide #17

- We expect ~6.9 k signal events from 922 fb⁻¹ of data.
- We perform the branching fraction measurement relative to normalization channel $D^0 o K_s^0 \pi^+ \pi^-$

Signal extraction for BF measurement:

- $D^0 \rightarrow K^0_s \pi^+ \pi^-$:
 - To extract the signal events from data sample we have used a 2d binned extended maximum likelihood fit in variables M_{D^0} and ΔM
 - Fit results from **Belle Simulation**:

Details on signal and background pdf in backup slide #17

• We expect ~1.1M $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ events from 922 fb^{-1} of data.

• For branching fraction measurement, we expect a precision of order $\Delta BF/BF \sim 2\%$

$a_{\rm CP}^{\rm T-odd}$ measurement

Simultaneous fit for a_{CP}^{T-odd} measurement:

• To measure a_{CP}^{T-odd} , data sample is divided into four categories:

- To obtain a_{CP}^{T-odd} , we perform a 2d unbinned extended maximum likelihood fit simultaneously to these four datasets.
- Instead of yields N_1 , N_2 , N_3 and N_4 , we float N_1 , A_T , N_3 and a_{CP}^{T-odd} . This choice is made to get correct uncertainty in a_{CP}^{T-odd} from fit results instead of calculating them using the uncertainty in yields.
- The expression for N_2 and N_4 in terms of N_1 , A_T , N_3 and a_{CP}^{T-odd} are obtained as shown below:

•
$$A_T = \frac{N_1 (C_T > 0) - N_2 (C_T < 0)}{N_1 (C_T > 0) + N_2 (C_T < 0)}$$
, $\longrightarrow N_2 = \frac{N_1 (1 - A_T)}{(1 + A_T)}$
• $\bar{A}_T = \frac{N_3 (-\bar{C}_T > 0) - N_4 (-\bar{C}_T < 0)}{N_4 (-\bar{C}_T < 0)}$ and $a_{T-odd}^{T-odd} = \frac{1}{2} (A_T - \bar{A}_T) \longrightarrow N_4 = \frac{N_3 (1 - A_T)}{N_4 (-\bar{C}_T < 0)}$

$$\bar{A}_T = \frac{N_3 \left(-\bar{C}_T > 0\right) - N_4 \left(-\bar{C}_T < 0\right)}{N_3 \left(-\bar{C}_T > 0\right) + N_4 \left(-\bar{C}_T < 0\right)} \text{ and } a_{CP}^{T-odd} = \frac{1}{2} \left(A_T - \bar{A}_T\right) \longrightarrow N_4 = \frac{N_3 \left(1 - \left(A_T - 2 * a_{CP}^{T-odd}\right)\right)}{1 + \left(A_T - 2 * a_{CP}^{T-odd}\right)}$$

Simultaneous fit for a_{CP}^{T-odd} measurement:

• Simultaneous fit projections on M_{D^0} and ΔM for four data samples obtained using Belle simulation are shown below:

• For CP violation measurement, based on MC studies expected precision is: ~1.4 %

Summary:

- We are in the final stage of performing CP violation measurement using T-odd triple product asymmetries for SCS charm meson decay $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$ at the Belle experiment.
- This will be a first CP violation measurement for the SCS decay $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$.
- SCS charm decays are recommended to search for CP violation due to expected enhanced sensitivity towards the new physics effects.
- We are also making a branching fraction measurement, expecting to improve upon the precision compared with existing measurement.
- Branching fraction measurement is done relative to the normalization channel $D^0 \rightarrow K_s^0 \pi^+ \pi^-$.
- For CP violation measurement, based on MC studies expected precision is: ~1.4 %
- For branching fraction measurement, we expect a precision of order $\Delta BF/BF \sim 2\%$

Backup

Variables used for K_S^0 reconstruction by Belle neural network based method

- K_s^0 momentum in lab frame.
- Distance along the z axis between two track helices at their closest approach.
- Flight length in x-y plane.
- Angle between K_s^0 momentum and the vector joining IP to K_s^0 decay vertex.
- Angle between π momentum and laboratory frame direction in K_s^0 rest frame.
- Distance of closest approach in the x-y plane between the IP and the two pion helices.
- Total number of hits in SVD (silicon vertex detector) and CDC (central drift chamber) for two pion tracks.

Signal extraction for BF measurement:

- $D^0 \rightarrow K^0_s K^0_s \pi^+ \pi^-$:
 - Using simulation, events are divided into following categories:
 - Events with correctly reconstructed signal decays.
 - Random π_{slow} background. (correctly reconstructed D^0 combined with wrong π_{slow})
 - **Broken charm peaking background.** (reconstruction missed one or more final state particles from a real *D*⁰ decay to a non signal final state)
 - $D^0 \rightarrow 3K_s^0$ peaking background (96% vetoed by selection on $\pi^+\pi^-$ invariant mass).
 - **Combinatorial background.** (random combination of final state particles)

• $D^0 \rightarrow K^0_s \pi^+ \pi^-$:

- Using simulation, events are divided into following categories:
 - Events with correctly reconstructed signal decays.
 - Random π_{slow} background.
 - Broken charm peaking background.
 - Combinatorial background.

Details of pdfs used to extract signal:

Component type	<i>М_D</i> о	ΔM
Signal decays	3 Asymmetric Gaussian (AG)	2AG + 1 student-t
Mis-reconstructed signal	2 nd order chebychev polynomial	4 th order chebychev polynomial
Random π_{slow} background	Same as signal	$Q^{\frac{1}{2}} + \alpha Q^{\frac{3}{2}} (Q = \Delta M - M_{\pi})$
Broken charm background	2 gaussian	student-t
$D^0 \rightarrow 3K_s^0$ background	gaussian	student-t
Combinatoric background	2 nd order chebychev polynomial	$Q^{\frac{1}{2}} + \alpha' Q^{\frac{3}{2}}$

 $2 > D^0 \rightarrow K^0_s \pi^+ \pi^-$

 $1>D^0 \to K^0_S K^0_S \pi^+ \pi^-$:

Component type	M_D o	ΔM	
Signal decays	3 Asymmetric Gaussian (AG)	1G + 1 Asymmetric student-t	
Random $\pi_{ m slow}$ background	Same as signal	$Q^{\frac{1}{2}} + \alpha Q^{\frac{3}{2}} (Q = \Delta M - M_{\pi})$	
Broken charm background	gaussian + 2 nd order polynomial	student-t	
Combinatoric background	1 st order chebychev polynomial	$Q^{\frac{1}{2}} + \alpha' Q^{\frac{3}{2}}$	

Rearranging asymmetry equations on slide 5

•
$$A_T = \frac{N_1(C_T > 0) - N_2(C_T < 0)}{N_1(C_T > 0) + N_2(C_T < 0)}$$
, $\implies N_2 = \frac{N_1(1 - A_T)}{(1 + A_T)}$

•
$$\bar{A}_T = \frac{N_3 (-\bar{c}_T > 0) - N_4 (-\bar{c}_T < 0)}{N_3 (-\bar{c}_T > 0) + N_4 (-\bar{c}_T < 0)} \text{ and } a_{CP}^{T-odd} = \frac{1}{2} (A_T - \bar{A}_T) \implies N_4 = \frac{N_3 (1 - (A_T - 2 * a_{CP}^{T-odd}))}{1 + (A_T - 2 * a_{CP}^{T-odd})}$$

All measurements of CP violation in charm decays using a_{CP}^{T-odd} :

 https://hflav-eos.web.cern.ch/hflaveos/charm/cp_asym/charm_todd_19Sep19.html

T-odd asymmetries in D⁰ decays

Year	Experiment	T-odd asymmetry in the decay mode D0 to K+K-π+π-	$A_{T-odd} = (A_T - \overline{A}_T)/2$
2019	BELLE	J. B. Kim et al. (BELLE Collab.), Phys. Rev. D 99, 011104 (2019).	$+0.0052 \pm 0.0037 \pm 0.0007$
2014	LHCb	<u>R. Aaij et al. (LHCb Collab.), JHEP 10, 5 (2014).</u>	$+0.0018 \pm 0.0029 \pm 0.0004$
2010	BABAR	P. del Amo Sanchez et al. (BABAR Collab.), Phys. Rev. D81, 111103 (2010).	$+0.0010 \pm 0.0051 \pm 0.0044$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	$+0.010 \pm 0.057 \pm 0.037$
		HFLAV average	$+0.0035 \pm 0.0021$
Year	Experiment	T-odd asymmetry in the decay mode D0 to K0sπ+π-π0	$\mathbf{A}_{\text{T-odd}} = (\mathbf{A}_{\text{T}} - \overline{\mathbf{A}}_{\text{T}})/2$
2017	BELLE	K. Prasanth et al. (BELLE Collab.), Phys. Rev. D 95, 091101 (2017).	-0.00028 ± 0.00138 (+0.00023 -0.00076)

T-odd asymmetries in D⁺ decays

Year	Experiment	T-odd asymmetry in the decay mode D+ to K0sK+ π + π -	$\mathbf{A}_{\text{T-odd}} = (\mathbf{A}_{\text{T}} - \overline{\mathbf{A}}_{\text{T}})/2$
2011	BABAR	J.P. Lees et al. (BABAR Collab.), Phys. Rev. D 84, 031103 (2011).	$-0.0120 \pm 0.0100 \pm 0.0046$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	$+0.023 \pm 0.062 \pm 0.022$
		HFLAV average	-0.0110 ± 0.0109

T-odd asymmetries in D_s⁺ decays

Year	Experiment	T-odd asymmetry in the decay mode Ds+ to K0sK+π+π-	$\mathbf{A}_{\text{T-odd}} = (\mathbf{A}_{\text{T}} - \overline{\mathbf{A}}_{\text{T}})/2$
2011	BABAR	J.P. Lees et al. (BABAR Collab.), Phys. Rev. D 84, 031103 (2011).	$-0.0136 \pm 0.0077 \pm 0.0034$
2005	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005).	$-0.036 \pm 0.067 \pm 0.023$
		HFLAV average	-0.0139 ± 0.0084