Measurement of $B \rightarrow D^{**} \ell \nu_{\ell}$ branching fraction using Belle data

Frank Meier

2021 Meeting of the Division of Particles and Fields of the American Physical Society Quark Flavor and Precision Measurements 12 July 2021

Introduction

- ▶ inclusive: $BR(B^+ \to X_c \ell \nu_\ell) = (10.8 \pm 0.4)\% / BR(B^0 \to X_c \ell \nu_\ell) = (10.1 \pm 0.4)\%$
- ▶ sum of BR($B \rightarrow D^{(*)} \ell \nu_{\ell}$) and BR($B \rightarrow D^{(*)} \pi \ell \nu_{\ell}$) = 9.05 % / 8.35 %
- ▶ gap of ~1.75 % between inclusive and exclusive branching fraction measurements of $B \rightarrow X_c \ell \nu_\ell$
- $B \rightarrow D\ell \nu_{\ell}$ and $B \rightarrow D^*\ell \nu_{\ell}$ known at 3-4% level
- ► $B \rightarrow D\pi \ell \nu_{\ell}$ and $B \rightarrow D^*\pi \ell \nu_{\ell}$ only known at 7-9% / 12-14% level for charged / neutral modes
- ► $B \rightarrow D^{(*)} \pi \pi \ell \nu_{\ell}$ observed by BaBar (Phys. Rev. Lett. 116, 041801 (2016))
- $B \rightarrow D^{(*)} \eta \ell \nu_{\ell}$ not yet measured

► $B \rightarrow D^{(*)} \pi \ell \nu_{\ell}$ and $B \rightarrow D^{(*)} \pi \pi \ell \nu_{\ell}$ important background contributions in measurements of $R(D) / R(D^*)$

Scope and goals of this analysis

- measure branching fraction of $B \rightarrow D^{(*)} \pi \ell \nu_{\ell}$
 - ▶ improve on previously published Belle analysis (Phys. Rev. D. 98, 012005 (2018))
 - replace tagging algorithm
 - revisit D reconstruction decay modes
 - change fit variable to extract signal yields
 - measure branching fraction relative to $B \rightarrow D^* \ell \nu_\ell$
 - study D^{**} mass spectrum with $D^{**} \rightarrow D^{(*)}\pi$
 - calculate sWeights
 - measure peak mass and width of D_0^* , D_1 , D_1' , and D_2^* using Breit-Wigner fit model
 - measure $BR(B \to D_0^* \ell \nu)$, $BR(B \to D_1 \ell \nu_\ell)$, $BR(B \to D'_1 \ell \nu_\ell)$, and $BR(B \to D_2^* \ell \nu_\ell)$
- ▶ confirm / add precision to BR($B \rightarrow D^{(*)}\pi \pi \ell \nu_{\ell}$) and look at $D^{(*)}\pi \pi$ spectrum
- study of q^2 -dependence in $B \to D^{(*)} \pi \ell \nu_{\ell}$
- measure $BR(B \rightarrow D^{(*)}\eta\ell\nu_{\ell})$ or set upper limit

Frank Meier (Duke University)

Experimental Setup

- asymmetric collision of e^+e^-
- \blacktriangleright center-of-mass energy mostly at $\Upsilon(4S)$ resonance
- ▶ $\Upsilon(4S) \rightarrow B^+B^-$ (~51.5%), $\Upsilon(4S) \rightarrow B^0\overline{B}^0$ (~48.5%)
- ▶ Belle collected ~770M $B\overline{B}$ pairs over the course of 10 years

07/12/2021

5 / 16

Full Event Interpretation

- ▶ fully reconstruct one of the *B* mesons (tag-side)
- hadronic and semileptonic version: trade-off between efficiency and purity
- ► train BDT for each stage ⇒ signal probability

Analysis in a nut shell

- ► read in and convert data from Belle to Belle II format using B2BII Comput. Softw. Big Sci. 2 (2018)
- run hadronic Full Event Interpretation with Belle training
 - ▶ B_{tag} selection: $|\Delta E| < 180$ MeV, $M_{\text{bc}} > 5.27$ GeV/ c^2 , signal probability > 0.005
- ▶ final state particle selection (e^{\pm} , μ^{\pm} , K^{\pm} , π^{\pm} , π^{0} , and K^{0}_{S})
- \blacktriangleright reconstruct D from final state particles and D^* by adding slow pion

 - $D^{0} \to K^{-}\pi^{+}, D^{0} \to K^{-}\pi^{+}\pi^{+}\pi^{-}, D^{0} \to K^{-}\pi^{+}\pi^{0}, D^{0} \to K^{0}_{s}\pi^{+}\pi^{-}, D^{0} \to K^{-}K^{+}, D^{0} \to K^{0}_{s}\pi^{0}, D^{0} \to K^{0}_{s}\pi^{+}\pi^{-}\pi^{0}, D^{0} \to \pi^{+}\pi^{-}$
- combine $D^{(*)}$ with 0, 1, and 2 bachelor pions + 1 lepton to form 24 different B_{sig} modes
- ► reconstruct $\Upsilon(4S)$ from $B_{\text{tag}} + B_{\text{sig}} (B^+B^-, B^0\overline{B}^0, B^0B^0)$
- check that there are no additional tracks in the rest of the event
- ▶ best $\Upsilon(4S)$ candidate selection based on tag-side signal probability and preference of D^* over D modes
- measure branching fractions of $B \to D^{(*)} \pi \ell \nu_{\ell}$ and $B \to D^{(*)} \pi \pi \ell \nu_{\ell}$ relative to $B \to D^* \ell \nu_{\ell}$

Frank Meier (Duke University)

Fit model

- ▶ fit dimension: $U = E_{\text{miss}} p_{\text{miss}}$ with $E_{\text{miss}} = E_{e^+e^-} E_{\text{tag}} E_{D^{**}} E_l$
 - \blacktriangleright better sensitivity than fitting missing mass squared $M_{\nu}^2 = E_{\rm miss}^2 p_{\rm miss}^2$
- ▶ PDF constructed as histograms with 120 bins in [-1; 2] based on MC
 - weighting applied to correct known data-MC differences in PID, tracking efficiency, π^0 and K_s^0 efficiency, charm branching fractions, tagging mode composition
 - additional Gaussian smearing of signal PDF
- components:
 - signal
 - feeddown (π^0 missed in reconstruction of $D^* \rightarrow D\pi^0$)
 - background
 - $B\overline{B}$ background (charged + neutral samples merged)
 - continuum background (uds + charm samples merged)
 - constrain ratio between $B\overline{B}$ and continuum
- simultaneous fit of D and D^* modes

Relative systematic uncertainties in %

- largest systematic uncertainties from external branching fractions
- conservative estimate of modeling uncertainties
- > partial cancellation of PID, tracking and selection efficiencies in ratio
- number of $B\overline{B}$ + tag efficiency in direct measurement would be a lot larger

	$B^0\!\to \overline{D}{}^0\pi^-\mu^+\nu_\mu$	$B^0\!\to \overline{D}{}^0\pi^-e^+\nu_e$	$B^+\!\to D^-\pi^+\mu^+\nu_\mu$	$B^+\!\to D^-\pi^+e^+\nu_e$
$BR(B \to D^* \ell \nu_\ell)$	1.90	1.90	3.89	3.89
charm branching ratios	0.95	0.95	1.42	1.42
fit model	0.94	0.56	0.53	1.14
efficiency MC statistic	0.78	0.87	0.75	0.69
$B \rightarrow D^* \ell \nu_\ell$ & $B \rightarrow D \pi \ell \nu_\ell$ form factors	0.40	0.66	0.03	0.71
charged hadron PID	0.26	0.30	1.53	1.51
tracking efficiency	0.30	0.29	0.59	0.62
π^0 efficiency	0.13	0.13	0.44	0.43
lepton PID	0.14	0.23	0.15	0.23
$K^0_{ m s}$ efficiency	0.01	0.01	0.03	0.03
sum	2.52	2.50	4.57	4.72

Frank Meier (Duke University)

Measurement of $B
ightarrow D^{**} \ell
u_\ell$ branching fraction using Belle data

$B^+\!\to D^-\pi^+\ell^+\nu_\ell$

- good agreement between electron and muon mode
- combined value compatible with world average but twice as precise

Frank Meier (Duke University)

Measurement of $B \to D^{**} \ell \nu_{\ell}$ branching fraction using Belle data

Duke

 $B^0 \to \overline{D}{}^0 \pi^- \ell^+ \nu_\ell$

- slight tension between electron and muon mode
- combined value compatible with world average but twice as precise

Frank Meier (Duke University)

Measurement of $B
ightarrow D^{**} \ell
u_\ell$ branching fraction using Belle data

$B \to D^* \pi \ell \nu_{\ell}$

fit result considerably smaller than PDG average

140

almost all sensitivity from feeddown

D** mass spectrum

▶ use fit of $E_{\text{miss}} - p_{\text{miss}}$ to calculate sWeights and statistically subtract background

- ▶ fit *D*^{**} mass spectrum with relativistic Breit-Wigner distributions
- \blacktriangleright narrow D_2^* resonance at expected position and with expected width

Frank Meier (Duke University)

Measurement of $B
ightarrow D^{**} \ell
u_\ell$ branching fraction using Belle data

Helicity distribution around D_2^* resonance

► fit with Legendre polynomials for spin-2 resonance looks good and compatible with MC shape

Frank Meier (Duke University)

Measurement of $B \rightarrow D^{**} \ell \nu_{\ell}$ branching fraction using Belle data

Exclusive $B \rightarrow D^* \pi \ell \nu_\ell$ branching fractions

- ► simultaneous fit of signal and feeddown reconstruction for $B^+ \rightarrow D^{*-} \pi^+ \ell^+ \nu_\ell$
- ▶ for $B^0 \to \overline{D}^{*0} \pi^- \ell^+ \nu_\ell$ only feeddown component fitted
- all shape parameters fixed to PDG values

Frank Meier (Duke University)

Measurement of $B \rightarrow D^{**} \ell \nu_{\ell}$ branching fraction using Belle data

Study of $B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^- \ell^+ \nu_\ell$

- main background sources
 - continuum \Rightarrow suppress via BDT using event shape variables and training with off-resonance data
 - ▶ peaking background ⇒ veto $B^+ \to D^{*-} \pi^+ \ell^+ \nu_\ell$ with $D^{*-} \to \overline{D}{}^0 \pi^-$

sensitivity expected to be about twice as good as BaBar

Frank Meier (Duke University)

Conclusion

- world's best measurements of $B \to D^{(*)} \pi \ell \nu_{\ell}$ branching fractions thanks to new tagging algorithm
 - excellent prospect for Belle II measurements once statistics is sufficient
- ▶ all results of combined branching fractions compatible with previous world averages
- extraction of individual $B \rightarrow D^{**} \ell \nu_{\ell}$ using sPlot technique
- study of $B \rightarrow D^{(*)} \pi \pi \ell \nu_{\ell}$ almost ready as well