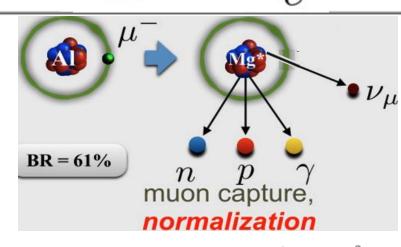
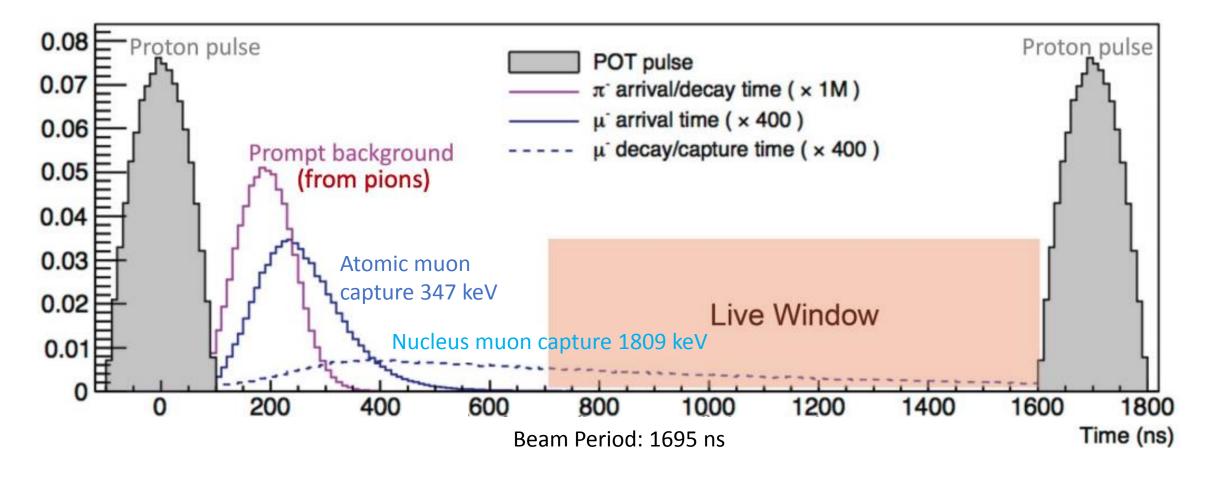

Normalization of the Mu2e Charged Lepton flavor Violation Experiment

Speaker: JIJUN CHEN

Purdue University

For Mu2e collaboration and stopping target monitor group

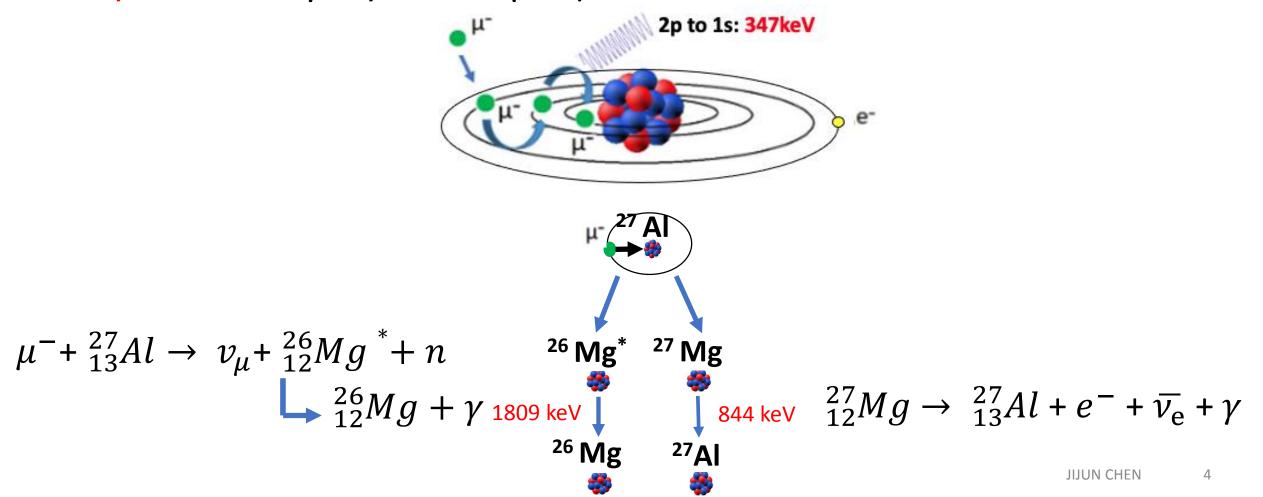

Mu2e experiment set-up


$$R_{\mu e} = \frac{\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)}{\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)} \longrightarrow R_{\mu e} = -$$

Proportional to

Charged Lepton Flavor Violation signal measurable with single-event-sensitivity(SES) of 2.5 x10⁻¹⁷

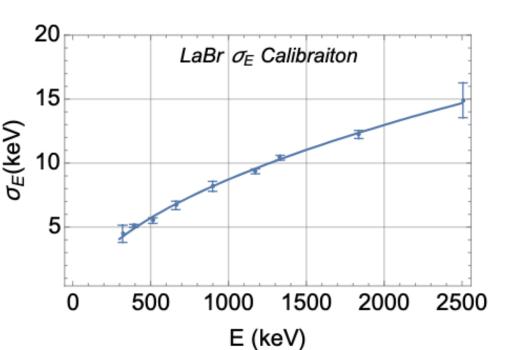
Mu2e Beam structure



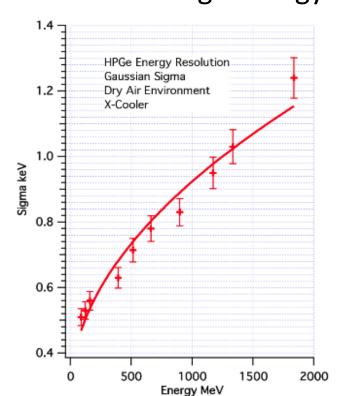
Atomic muon capture: **347 keV line**Nucleus muon capture: **1809keV line**

Activated daughters resulting from nuclear capture: **844 keV line** (collected during Beam-off 1 seconds)

3 important energy lines


- Prompt: 347 keV X-ray 79.8(8)% of μ captures, τ =10ps
- Semi-prompt: 1.809MeV γ ray 51(5)% of μ captures, $\tau = 864ns$
- Delayed: 844keV γ ray 9.3% of μ captures, $\tau = 13$ mins

LaBr₃ and HPGe


LaBr₃(Ce+Sr) detector:

energy resolution(@1809keV): 10 keV rising edge ~ 5ns decay tail ~ 26ns pulse width 200ns high-rate capability ~800KHz observed average energy ~3MeV

HPGe detector:

energy resolution(@1809keV): 1 keV rising edge \sim 400ns decay tail \sim 60 μ s limited rate capability \sim 73KHz observed average energy \sim 5MeV

Error budgets for 1809keV from muon capture

Systematic Uncertainties				
Factors	Values	Uncertainty(%)		
$P_{capture}$	0.61	0.3		
Br_{1809}	0.51	5		
$G_{accep}(0.5cm^2)$	3.34e-9	3		
Target Path Atten	0.964	1		
Absorber×	$0.218(LaBr_3)$	2		
Photopeak acceptance	0.017(HPGe)			
Total		6.2		

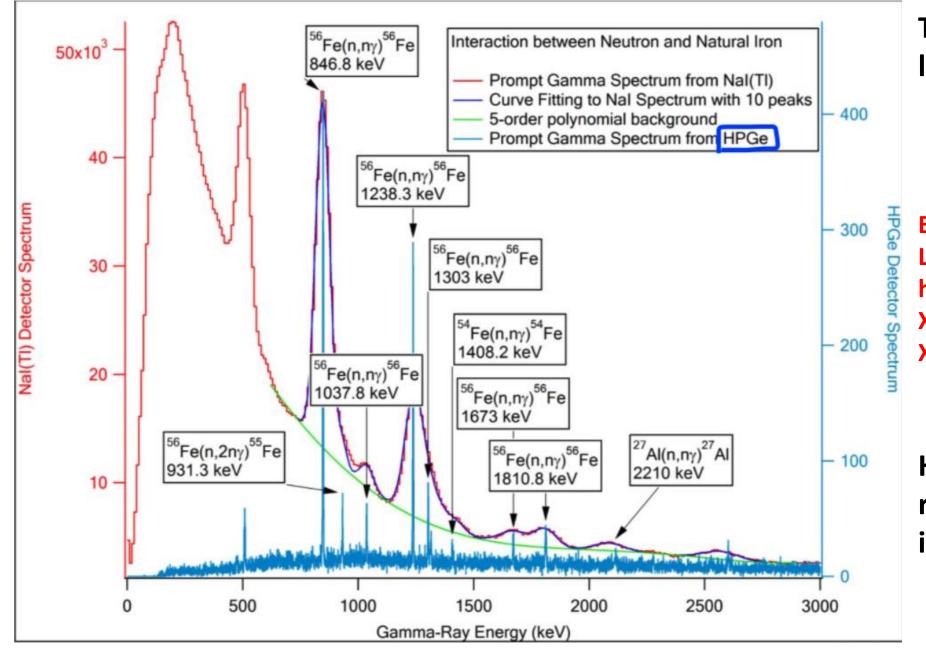
Uncertainty of branching ratio of 1809

• Present : 10% [Measday et. al]

AlCap+ Measday: 7%

 Mu2e goal: 5% normalizing to 347keV(2p to 1s)

- Total error budget (statistical and systematic error budget) is 10%, so 6.2% systematic error leaves 3.8% statistical error
- Lower systematic error, allows higher statistical error, which means lower integration time


Two detectors to accurately measure the lines

- 1809 keV line is the 'Golden Channel' directly proportional to the stopped muon numbers.
- The high-rate capability LaBr₃ allows short integration times.
- The 347 keV and 844 keV will be used as verification lines.
- HPGe will be used to check for interfering lines in the LaBr₃ signals.

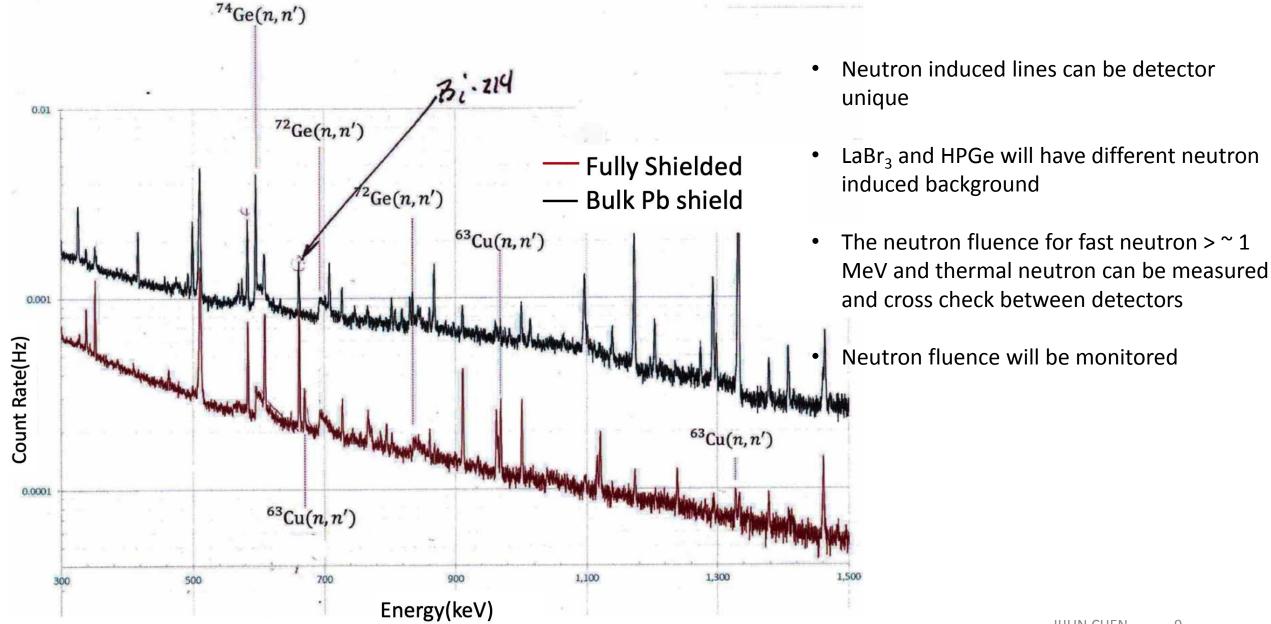
Three possible interfering sources:

- (1) Technology independent lines. Lines directly from the source.
- (2) An interference unique to the technology, for example, created by a neutron fluence.
- (3) An interference created by the electronic response, for example pile up.

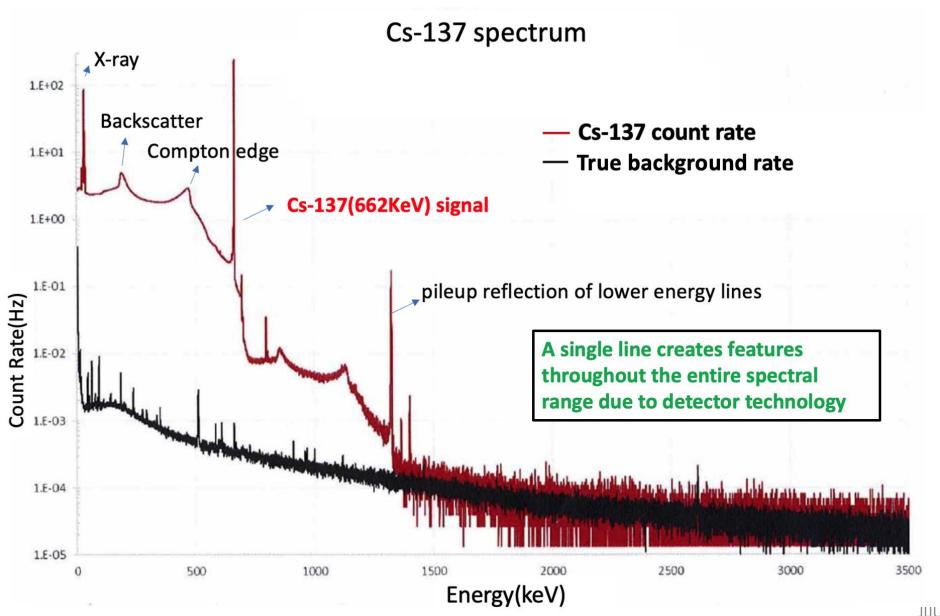
An example: measuring lines in NaI with help from HPGe

Technology independent lines

Enhanced Lanthanum Bromide LaBr₃(Ce+Sr)


has energy resolution:

X 10 better than Nal


X 10 worse than HPGe

HPGe will be used to resolve interfering lines in LaBr₃

HPGe is exposed to a neutron fluence

An example: interference created by the electronic response

Resolving interfering lines in LaBr₃

$$\frac{N_{347}}{N_{1809}} = \frac{N_{stopped muons} \ \varepsilon_{Geo} \ \varepsilon_{Detector} \ \varepsilon_{pileup} \dots \Gamma_{347}}{N_{stopped muons} \ \varepsilon_{Geo} \ \varepsilon_{Detector} \ \varepsilon_{pileup} \dots \Gamma_{1809}}$$
want to measure

Simplify as $\frac{N_{347}}{N_{1809}} = \frac{\phi_{347} \, \Gamma_{347}}{\phi_{1809} \Gamma_{1809}}$

$$\Gamma_{1809}^{HPGe} = \Gamma_{347} \frac{\phi_{HPGe}^{347}}{\phi_{HPGe}^{1809}} \frac{N_{HPGe}^{1809}}{N_{HPGe}^{347}} \quad (2)$$

 Γ_{347} is well-known and assuming HPGe measured line have no interference line

Make the same measurement using LaBr₃ to check for interfering sources δ_{energy}

$$\Gamma_{1809}^{LaBr} = \Gamma_{347}^{LaBr} \frac{\phi_{LaBr}^{347}}{\phi_{LaBr}^{1809}} \frac{N_{LaBr}^{1809}}{N_{LaBr}^{347}} (1 - \delta_{347+1809})$$
 (2) (2) be identical
$$\delta_{1809}$$
 is not expected

Demanding (1) and (2) be identical

$$\frac{\Gamma_{1809}^{HPGe}}{\Gamma_{347}} = \frac{\Gamma_{1809}^{LaBr}}{\Gamma_{347}^{LaBr}} \left(1 - \delta_{347+1809}\right) \left(3\right)$$

Similarly, apply to 844 keV, Which is measured during beam-off and has low background: $\delta_{844} = 0$ (expected)

Combine to check
$$\delta_{1809}$$
 $\frac{\Gamma_{844}^{HPGe}}{\Gamma_{1809}^{HPGe}} = \frac{\Gamma_{844}^{LaBr}}{\Gamma_{1809}^{LaBr}} (1 - \delta_{1809})$

$$\frac{\Gamma_{844}^{HPGe}}{\Gamma_{347}} = \frac{\Gamma_{844}^{LaBr}}{\Gamma_{347}^{LaBr}} (1 - \delta_{347})$$
 (4)

Error budgets for 1809keV from muon capture

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Systematic Uncertainties			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Factors	Values	Uncertainty(%)	
$G_{accep}(0.5 cm^2)$ 3.34e-9 3 Target Path Atten 0.964 1 Absorber× 0.218(LaBr ₃) Photopeak acceptance 0.017(HPGe) Interference lines negligible negligible	$P_{capture}$	0.61	0.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Br_{1809}	0.51	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G_{accep}(0.5cm^2)$	3.34e-9	3	
Photopeak acceptance 0.017(HPGe) 2 Interference lines negligible negligible	Target Path Atten	0.964	1	
Photopeak acceptance 0.017(HPGe) Interference lines negligible negligible	Absorber×	$0.218(LaBr_3)$	9	
	Photopeak acceptance	0.017(HPGe)		
Total 6.2	Interference lines	negligible	negligible	
	Total		6.2	

Long integration time for measuring possible interfering lines will make this systematic error negligible

- Total error budget (statistical and system error budget) is 10%, so 6.2% systematic error leaves 3.8% statistical error
- Lower systematic error, allows higher statistical error, which means lower integration time
- The relationship between statistical error $\Delta\delta$ and integration time t: $t=\Delta\delta^2$

Time to achieve 10% stopped muon number

measurement

	LaBr Detector		
Line	Mag	No Mag	
$1809~{ m keV}$	3 mins	5 mins	
844 keV	10 hrs	42 hrs	
347 keV (Flash)	30 mins	3 hrs	cross-check
347 keV (Off Flash)	1 min	5 mins	

•	1809keV: the 'Golden Channel' is directly
	proportional to the stopped muon number.

- 844keV: cross-check stopped muon number; check for interfering lines;
- 347KeV: improve 1809 branching ratio cross-check stopped muon number; check for interfering lines;
- Using the 'Golden Channel', LaBr₃ can do 10% stopped muon number measurement in 5 mins integration.
- LaBr₃ is 10 time faster than HPGe
- HPGe is used to:
 cross check stopped muon number;
 improve the branching ratio of 1809;
 check for interfering lines for LaBr₃ detector

	HPGe Detector		
Line	Mag	No Mag	
$1809~{ m keV}$	32 mins	54 mins	
844 keV	13 hrs	40 hrs	
347 keV (Flash)	30 hrs	170 hrs	
347 keV (Off Flash)	1.2 hrs	5 hrs	

cross-check

Summary

 Considered all the systematic error and statistical error, with negligible systematic error from measuring the interfering lines using HPGe and LaBr₃ together, the integration time of 5 mins can achieve 10% uncertainty stopped muon number measurement.

Thank you & Reference

• [1] Measday et. al., Phys. Rev. C 76, 035504 (2007)

Resolving interfering lines in LaBr3

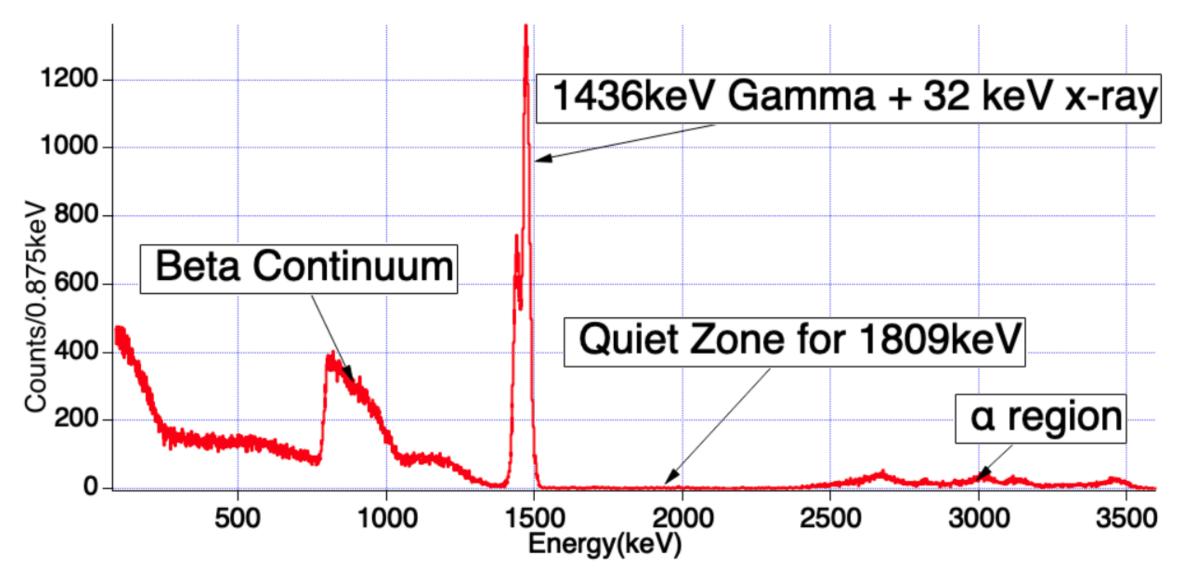
 $S_{Measured} = S_{True} + \delta_{\Sigma I}$

Using HPGe measuring the fast neutron and the thermal neutron fluence: N_{fast} = F_{fast} δ N_{slow} = F_{slow} δ , F is the fluence, δ is the cross section that can be checked by table

solution

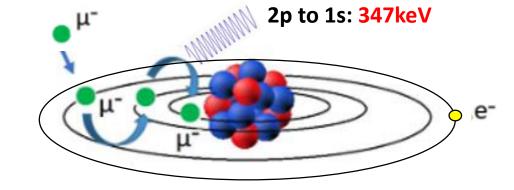
Require both detectors. HPGe corrected at high rate for pile up line

solution


Where $\delta_{\Sigma I}$ represents lines from 3 distinct possible interfering sources;

- (a) An interference unique to the technology, like neutron fluence in slide 10
- (b) An interference created by the electronic response of the technology: like source of pile up in slide 11
- (c) A technology independent source which is also independent of the signal source: resolution issue in last slide

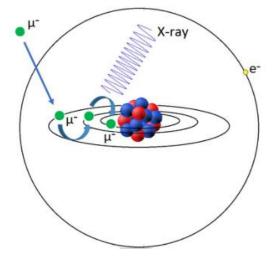
solution


Require both detectors

LaBr₃ self-background

3 important gamma rays

- Prompt: atomic capture, order 10ps
- Semi-prompt: nuclear capture, order 1 μs



• Delayed: activated daughters resulting from nuclear capture, order 10 mins

•
$$\mu^- + {}^{27}_{13}Al \rightarrow \mu^- + {}^{27}_{13}Al + \gamma$$

• Prompt: 2p-1s, 347 keV X-ray 79.8(8)% of μ stops

•
$$\mu^- + {}^{27}_{13}Al \rightarrow v_{\mu} + {}^{26}_{12}Mg + n + \gamma$$

• Semi-prompt: 1.809MeV γ ray 51(5)% of μ captures, $\tau=864ns$

$$\bullet \ \mu^- + {}^{27}_{13}Al \rightarrow \ v_\mu + {}^{26}_{12}Mg \ , \quad {}^{26}_{12}Mg \rightarrow \ {}^{24}_{12}Al \ + \ {}^{1}_{1}p \ + 2{}^{1}_{0}n \ + \gamma$$

• Delayed: 844keV γ ray 9.3% of μ captures, $\tau=13$ mins

JUN CHEN 18