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Dark Photon Physics Earth Signal Analysis of SuperMAG Data

Introduction

• Need big apparatus to detect ultralight dark photons

• Current constraints below 10−14 eV (sub-Hz) all astrophysical

• We use the Earth as our apparatus/transducer!

• Dark photons −→ magnetic field at Earth’s surface
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Coupled Photon–Dark-Photon System
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• Two modes: “interacting” A, “sterile” A′

• Only A couples to charges
• Only A is affected (at leading order) by conductors
• The observable fields are E and B (no contribution from E ′ and B ′)

• One massless and one massive (mass mA′) propagation state

• A and A′ are not propagation states in vacuum!
• Mixing (and all observable effects) are proportional to mA′

• A and A′ are propagation states in conductor → mixing at boundary
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Effective Current Approach
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• When A′ is DM and ε� 1 (no backreaction), then Jµeff = −εm2
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′µ.

• Non-relativistic (v = 0)
• J0

eff = 0
• Jeff constant in space
• Oscillates with frequency ω = mA′

• Just a single-photon EM problem with a background current!
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Ampère’s Law Argument

BR ∼
∮

B · d` =
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Signal Properties

• Observable magnetic field at Earth’s surface

• Large: suppressed by mA′R not mA′h

• Spatially coherent: global spatial pattern (along latitudes)

• Temporally coherent: sharply peaked in frequency with Q ∼ 106

• Robust: relevant component of signal is unaffected to leading order
by boundary conditions!
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SuperMAG
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• Collaboration of over 500 ground-based magnetometers

• Data collected over 50 years

• 1-minute time resolution
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Results

10 3 10 2
f0 = mA ′/(2 ) [Hz]

10 173 × 10 18 6 × 10 17

mA ′ [eV]

10 6

10 5

10 4

10 3

10 2
This signal
This signal, smoothed
Dubovsky & Hernandez-Chifflet
McDermott & Witte, CDM
McDermott & Witte, He+ +

Wadekar & Farrar
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Future Prospects

• SuperMAG is also releasing 1-second resolution data, which would
probe higher masses.

• If 1/f noise continues, then our bound scales better than others at
higher masses.

• Other possible ways to improve:
• Noise modeling
• Better statistical analysis
• Better magnetometers
• More and/or higher frequency data

• Similar signal for axions?
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Summary

• We demonstrated a novel mechanism to probe ultralight dark
photons using the Earth as a transducer.

• It utilizes the natural conductivity environment near the Earth.

• Our signal is not suppressed by the height of the atmosphere!

• It is highly spatially and temporally coherent, and robust to
environmental details.

• We set complementary bounds on dark photon parameter space.

• With further research, our results will become even better!
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Mixing in Medium

• Consider (transverse) modes of frequency ω

In vacuum In good conductor (σ � m2
A′/ω)

State A− εA′ A′ + εA A A′

Propagation Massless Mass mA′ Damped Mass mA′

σ ≫ m
A'

2 /ω

A' ≠ 0 A' ≠ 0 A' ≠ 0
A ≠ 0 A = 0 A ∝ ε
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Solving the wave equation with a current

(∇2 − ∂2
t )E = ∂tJeff

E = EDM + Eresponse

EDM (specific) Eresponse (homogeneous)

(∇2 − ∂2
t )EDM = ∂tJeff (∇2 − ∂2

t )Eresponse = 0

Field “sourced by” DM Cavity response to cancel E‖ at boundary

Constant in space (Slowly) varying with k = mA′

BDM = 0 Bresponse 6= 0
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ADMX/DM Radio Ampère’s Law Argument
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ADMX/DM Radio Solution

Bresp.

σ � m2
A′/ω

Top view

EDM

Eresp.

σ � m2
A′/ω

Side view

E = EDM + Eresponse ∝ m2
A′(R

2 − r2)

B = − i

mA′
∇× E ∝ mA′r
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Earth Conductivity Profile

Core Lower Ionosphere IPM
Atmosphere σq σ⊥

σ (ωp) [eV] 100 10−18 10−2 10−8 10−10

h [km] 3000 5 100 3× 105

δ [km] 0.03 108 2 1000 2

Shield? Yes No ??? Yes

mA′ ∼ 10−18 eV
f ∼ 10−4 Hz
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Vector Spherical Harmonics
• Three types of vector spherical harmonics: Y`m, Ψ`m, Φ`m

• Only ` = 1 relevant for us

• Real and imaginary parts of m = ±1 oriented along x- and y -axes

Y10 Ψ10 Φ10
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Spherical Modes

Transverse Electric (TE) Transverse Magnetic (TM)

ETE ∼ Φ`m ETM ∼ Y`m + Ψ`m

BTE ∼ Y`m + Ψ`m BTM ∼ Φ`m
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Full TM Modes

ETM =
∑
`m

(
− `(`+ 1)g`m(mA′r)

mA′r
Y`m

−
(
g ′`m(mA′r) +

g`m(mA′r)

mA′r

)
Ψ`m

)
e−imA′ t

BTM = −i
∑
`m

g`m(mA′r)Φ`me
−imA′ t
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Earth Signal

Side view Side view Top view

EDM Eresponse Bresponse

• Only TM modes necessary!

B ∝
1∑

m=−1

(εm2
A′RA

′
m)Φ1m

• Has particular Φ1m spatial pattern that we can search for!
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Earth Field Oscillations
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Earth Signal with Rotation

• Earth signal without rotation:

B =

√
π

3
εm2

A′R
1∑

m=−1

A′mΦ1me
−imA′ t

• Since Φ1m ∝ e imφ, can account for rotation of earth as

B =

√
π

3
εm2

A′R
1∑

m=−1

A′mΦ1me
−i(mA′−2πfdm)t ,

where fd = 1/(sidereal day).
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Robustness to Boundary Conditions

• As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

• To LO (and NLO), Eresponse = −EDM regardless of boundaries

Eresponse,TE Eresponse,TM BTE BTM

LO

NLO

NNLO

NNNLO

• BTM higher order than ETM, but BTE lower order than ETE

• As long as our search projects onto Φ1m, we can just look for BTM!
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Analysis Difficulties
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• What we’d like to do:

• Project onto Φ1m modes

Noise variations/correlations

• Fourier transform

Active stations highly variable

• Look for single-frequency peak

Total time > coherence time
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Time Series Construction

Station 4

Station 3

Station 2

Station 1

Constructed

• Combine data from active stations into new time series

• Weight by inverse noise and Φ1m (different m’s will be correlated)

• Do same for signal and just work with time series
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Time Series Partitioning

Tcoh

• Split time series into chunks of length Tcoh

• Find single-frequency signal size zk in each chunk k separately

• Combine results incoherently, i.e.
∑

k |zk |2

• Utilize Bayesian framework to derive posterior for ε
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Bayesian Analysis

• Analysis variables:

zik ∼
Data√
Noise

sik ∼
Signal√

Noise

• Likelihood of data zik given coupling ε

L({zik}|ε) ∝
∏
i ,k

1

3 + ε2s2
ik

exp

(
− 3|zik |2

3 + ε2s2
ik

)
• Definition of bound ε̂ (using Jeffreys prior p(ε))∫ ε̂

0
dε L({zik}|ε) · p(ε) = 0.95
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Coherence Time Approximation

10−3 10−2

f [Hz]

108

109

T
im

e
[s

]

Tn

(fv2
dm)−1

Ttot

(fv2
dm)−1 ± 3%

2.0× 10−3 2.5× 10−3

4× 108

5× 108



Backup Slides

Candidate Rejection

• Identified 30 signal candidates by comparing
∑

i ,k |zik |2 to

χ2-distribution

• Tested candidates with resampling analysis

• Reran analysis with 4 subsets of time and saw if zik consist with signal

• Also with 4 subsets of stations

• All failed one, the other, or joint resampling (except two near
Nyquist frequency f = 1/(2 min))
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