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Introduction

Need big apparatus to detect ultralight dark photons

Current constraints below 10~ eV (sub-Hz) all astrophysical

We use the Earth as our apparatus/transducer!

Dark photons — magnetic field at Earth's surface
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Coupled Photon—Dark-Photon System
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Two modes: “interacting” A, “sterile” A’

Only A couples to charges

® Only A is affected (at leading order) by conductors
® The observable fields are E and B (no contribution from E’ and B’)

One massless and one massive (mass my/) propagation state

A and A’ are not propagation states in vacuum!

® Mixing (and all observable effects) are proportional to mas
® Aand A’ are propagation states in conductor — mixing at boundary
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Effective Current Approach
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® When A’ is DM and € < 1 (no backreaction), then Ji = —em3, A

¢ Non-relativistic (v = 0)
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® Jefr constant In space
® Oscillates with frequency w = mpa/
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Effective Current Approach

1 1
LD =g FuF - ZF,;V I o mipg A AV emiy ATAL — Sy Ay

® When A’ is DM and € < 1 (no backreaction), then Ji = —em3, A

¢ Non-relativistic (v = 0)
0 _
* Jig=0 _
® Jefr constant In space
® Oscillates with frequency w = mpa/

® Just a single-photon EM problem with a background current!
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Signal Properties

Observable magnetic field at Earth's surface

Large: suppressed by maR not mah

Spatially coherent: global spatial pattern (along latitudes)

Temporally coherent: sharply peaked in frequency with Q@ ~ 10°

Robust: relevant component of signal is unaffected to leading order
by boundary conditions!
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SuperMAG
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Stations reporting
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e Collaboration of over 500 ground-based magnetometers
® Data collected over 50 years

® 1-minute time resolution
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Earth Signal Analysis of SuperMAG Data
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Future Prospects

SuperMAG is also releasing 1-second resolution data, which would
probe higher masses.

If 1/f noise continues, then our bound scales better than others at
higher masses.

Other possible ways to improve:
® Noise modeling
® Better statistical analysis
® Better magnetometers
® More and/or higher frequency data

Similar signal for axions?
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Summary

We demonstrated a novel mechanism to probe ultralight dark
photons using the Earth as a transducer.

It utilizes the natural conductivity environment near the Earth.
Our signal is not suppressed by the height of the atmosphere!

It is highly spatially and temporally coherent, and robust to
environmental details.

We set complementary bounds on dark photon parameter space.

With further research, our results will become even better!
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Mixing in Medium

e Consider (transverse) modes of frequency w
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e Consider (transverse) modes of frequency w

In vacuum

In good conductor (o > m3%, /w)

State A—cA A +:A

Propagation | Massless Mass my/
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Solving the wave equation with a current
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Solving the wave equation with a current
(V2 = 07)E = OrJest

E = EDM + Eresponse

Epwm (specific) E:csponse (homogeneous)

(Vz - 8?)EDM = Ot Jesr (V2 - 8?)Eresp0nse =0
Field “sourced by” DM | Cavity response to cancel E| at boundary

Constant in space (Slowly) varying with k = ma

Bpy =0 Bresponse # 0
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ADMX/DM Radio Ampere's Law Argument
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ADMX /DM Radio Solution

Top view Side view
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E = Epm + Eresponse X m/24/(R2 - r2)
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Earth Conductivity Profile

my ~ 1078 eV

SURFACE OF EARTH IONOSPHERE MAGNE TOPAVSE f ~ 10—4 Hz
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Vector Spherical Harmonics

® Three types of vector spherical harmonics: Yy, Yom, Pom
® Only £ =1 relevant for us

® Real and imaginary parts of m = +1 oriented along x- and y-axes

Y10 ‘1’10 (I)IO
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Spherical Modes

Transverse Electric (TE)

Transverse Magnetic (TM)

Ete ~ P

Bt~ Yim+ ¥y,

Etm ~ Yim + ¥y
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Full TM Modes
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Earth Signal

Side view Side view Top view

® Only TM modes necessary!

1
B o Y (emaRAL)®1m

m=—1

® Has particular ®7,, spatial pattern that we can search for!



Backup Slides
000000000e00000000

Earth Field Oscillations

= 0.0007

£ = 0.2507

= 07507

= 05007

i

= 06257
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Earth Signal with Rotation

® Earth signal without rotation:
— 1
2 / —i t
B = \/;smA,R > AL Rime
m=—1
e Since ®1,, x €™?, can account for rotation of earth as
- 1
B = \/;smf‘,R > AL By e a2t
m=-—1

where f; = 1/(sidereal day).
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Robustness to Boundary Conditions

® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!
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® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!
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Robustness to Boundary Conditions

® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

® To LO (and NLO), Eresponse = —Epwm regardless of boundaries
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Robustness to Boundary Conditions

® As long as geometry is sub-wavelength, our solution is the correct
leading-order TM magnetic field, regardless of boundary conditions!

® To LO (and NLO), Eresponse = —Epwm regardless of boundaries

Eresponse, TE  Eresponse, TM Bte Brwm

LO X v X X
NLO X X ? Vv
NNLO ? ? ? X
NNNLO ? ? ? 0?2

® B\ higher order than Ety, but Byg lower order than Etg

® As long as our search projects onto ®1,,,, we can just look for Bty!
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Analysis Difficulties

e What we'd like to do:

e Project onto ®;,, modes
e Fourier transform

e Look for single-frequency peak

Stations reporting
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Analysis Difficulties

250~ B

200

150 = -

100~ B

Stations reporting

50 —

\\\\\ \‘\“\\ S S ,‘\\\\ ,\n/\\
® \What we'd like to do:
e Project onto ®;,, modes Noise variations/correlations
e Fourier transform Active stations highly variable

e Look for single-frequency peak Total time > coherence time
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Time Series Construction

Station 1
Station 2

Station 3

Station 4

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m’s will be correlated)

® Do same for signal and just work with time series



Backup Slides
000000000000080000

Time Series Construction

Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m’s will be correlated)

® Do same for signal and just work with time series



Backup Slides
000000000000080000

Time Series Construction

Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m’s will be correlated)

® Do same for signal and just work with time series



Backup Slides
000000000000080000

Time Series Construction

Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m’s will be correlated)

® Do same for signal and just work with time series



Backup Slides
000000000000080000

Time Series Construction

Station 1
Station 2
Station 3

Station 4

Constructed

® Combine data from active stations into new time series
® Weight by inverse noise and ®1,,, (different m’s will be correlated)

® Do same for signal and just work with time series
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Time Series Partitioning

| Tcoh |

Split time series into chunks of length Ty,

Find single-frequency signal size z, in each chunk k separately

Combine results incoherently, i.e. >, |zk|2

Utilize Bayesian framework to derive posterior for ¢
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Split time series into chunks of length Ty,

Find single-frequency signal size z, in each chunk k separately

Combine results incoherently, i.e. >, |zk|2

Utilize Bayesian framework to derive posterior for ¢
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Bayesian Analysis

® Analysis variables:

Data . Signal
v/'Noise ik v/ Noise

® |ikelihood of data zj given coupling
3|Z,'k’2
{Zlk}|€ O(H3+ 25 p(_3+525i2k

e Definition of bound ¢ (using Jeffreys prior p(¢))

Zik ~

/0 Cde L({znte) - ple) = 0.95
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Coherence Time Approximation
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Candidate Rejection

® |dentified 30 signal candidates by comparing >_. , |zi|? to
x>2-distribution

® Tested candidates with resampling analysis

® Reran analysis with 4 subsets of time and saw if zj consist with signal

® Also with 4 subsets of stations

e All failed one, the other, or joint resampling (except two near
Nyquist frequency f = 1/(2 min))
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