Earth Signal

Analysis of SuperMAG Data

The Earth as a transducer for dark-photon dark-matter detection

Saarik Kalia

based on arXiv:2106.00022 and forthcoming publication with Michael A. Fedderke, Peter W. Graham, Derek F. Jackson Kimball

Meeting of the Division of Particles and Fields

July 13, 2021

Earth Signal 00 Analysis of SuperMAG Data

Introduction

• Need big apparatus to detect ultralight dark photons

• Current constraints below 10⁻¹⁴ eV (sub-Hz) all astrophysical

• We use the Earth as our apparatus/transducer!

• Dark photons \longrightarrow magnetic field at Earth's surface

Earth Signal

Analysis of SuperMAG Data

Introduction

ADMX/DM Radio

Earth

B suppressed by $rac{L}{\lambda_{
m DM}} \sim m_{
m DM} L$

B suppressed by $\frac{L}{\lambda_{\rm DM}} \sim m_{\rm DM} L$

B suppressed by $m_{\text{DM}}R!$

Earth Signal 00 Analysis of SuperMAG Data

Outline

1. Dark Photon Physics

2. Earth Signal

3. Analysis of SuperMAG Data

Analysis of SuperMAG Data 0000

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - J^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

Analysis of SuperMAG Data

Coupled Photon–Dark-Photon System

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

• Two modes: "interacting" A, "sterile" A'

$$\mathcal{L} \supset -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} - rac{1}{4} \mathcal{F}'_{\mu
u} \mathcal{F}'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - \mathcal{J}^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u}F^{\mu
u} - rac{1}{4} F_{\mu
u}'F'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}_{\mu}' \mathcal{A}^{\prime\mu} + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}^{\prime\mu} \mathcal{A}_{\mu} - J^{\mu}_{\mathsf{EM}} \mathcal{A}_{\mu}$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')
- One massless and one massive (mass $m_{A'}$) propagation state

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u}F^{\mu
u} - rac{1}{4} F_{\mu
u}'F'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}_{\mu}' \mathcal{A}'^{\mu} + arepsilon rac{m_{\mathcal{A}'}^2 \mathcal{A}'^{\mu} \mathcal{A}_{\mu}}{M} - J_{\mathsf{EM}}^\mu \mathcal{A}_{\mu}$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')
- One massless and one massive (mass $m_{A'}$) propagation state
- A and A' are not propagation states in vacuum!
 - Mixing (and all observable effects) are proportional to $m_{A'}$
 - A and A' are propagation states in conductor \rightarrow mixing at boundary

Analysis of SuperMAG Data

Effective Current Approach

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

• When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.

Analysis of SuperMAG Data 0000

Effective Current Approach

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F_{\mu
u}^{\prime} F^{\prime\mu
u} + rac{1}{2} m_{A^{\prime}}^2 A_{\mu}^{\prime} A^{\prime\mu} + arepsilon m_{A^{\prime}}^2 A^{\prime\mu} A_{\mu} - J^{\mu}_{\mathsf{EM}} A_{\mu}$$

- When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.
- Non-relativistic (v = 0)
 - $J_{\rm eff}^0 = 0$
 - **J**_{eff} constant in space
 - Oscillates with frequency $\omega = m_{A'}$

Analysis of SuperMAG Data 0000

Effective Current Approach

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

- When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.
- Non-relativistic (v = 0)
 - $J_{\rm eff}^0 = 0$
 - **J**_{eff} constant in space
 - Oscillates with frequency $\omega = m_{A'}$
- Just a single-photon EM problem with a background current!

Earth Signal ●○ Analysis of SuperMAG Data

Ampère's Law Argument

Earth Signal ●○ Analysis of SuperMAG Data

Ampère's Law Argument

$$BR \sim \oint \boldsymbol{B} \cdot d\ell = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

Earth Signal ●○

Analysis of SuperMAG Data

Ampère's Law Argument

$$BR \sim \oint \boldsymbol{B} \cdot d\ell = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

 $B\sim \varepsilon m_{A'}^2 RA'\sim \varepsilon m_{A'} R\sqrt{
ho_{\rm DM}}$

Analysis of SuperMAG Data

Signal Properties

• Observable magnetic field at Earth's surface

• Large: suppressed by $m_{A'}R$ not $m_{A'}h$

• Spatially coherent: global spatial pattern (along latitudes)

• Temporally coherent: sharply peaked in frequency with $Q\sim 10^6$

 Robust: relevant component of signal is unaffected to leading order by boundary conditions!

Earth Signal

Analysis of SuperMAG Data •000

SuperMAG

- Collaboration of over 500 ground-based magnetometers
- Data collected over 50 years
- 1-minute time resolution

Analysis of SuperMAG Data 000

Results

Analysis of SuperMAG Data 0000

Future Prospects

- SuperMAG is also releasing 1-second resolution data, which would probe higher masses.
- If 1/f noise continues, then our bound scales better than others at higher masses.
- Other possible ways to improve:
 - Noise modeling
 - Better statistical analysis
 - Better magnetometers
 - More and/or higher frequency data
- Similar signal for axions?

Analysis of SuperMAG Data 000 \bullet

Summary

- We demonstrated a novel mechanism to probe ultralight dark photons using the Earth as a transducer.
- It utilizes the natural conductivity environment near the Earth.
- Our signal is not suppressed by the height of the atmosphere!
- It is highly spatially and temporally coherent, and robust to environmental details.
- We set complementary bounds on dark photon parameter space.
- With further research, our results will become even better!

Mixing in Medium

• Consider (transverse) modes of frequency ω

	In vacuum		In good conductor ($\sigma \gg m_{A'}^2/\omega$)	
State	$A - \varepsilon A'$	$A' + \varepsilon A$	A	A'
Propagation	Massless	Mass $m_{A'}$	Damped	Mass $m_{A'}$

Mixing in Medium

• Consider (transverse) modes of frequency ω

	In vacuum		In good conductor $(\sigma \gg m_{{\cal A}'}^2/\omega)$	
State	$A - \varepsilon A'$	$A' + \varepsilon A$	A	A'
Propagation	Massless	Mass $m_{A'}$	Damped	Mass $m_{A'}$

$$\sigma \gg m_A^2/\omega$$

$$A \neq 0 \longrightarrow A = 0$$

$$A' \neq 0 \longrightarrow A' \neq 0$$

$$A' \neq 0$$

$$A \propto \varepsilon$$

$$A' \neq 0$$

Solving the wave equation with a current

$$(
abla^2 - \partial_t^2) \boldsymbol{E} = \partial_t \boldsymbol{J}_{\text{eff}}$$

$$\mathbf{\textit{E}} = \mathbf{\textit{E}}_{\mathsf{DM}} + \mathbf{\textit{E}}_{\mathsf{response}}$$

Solving the wave equation with a current

$$(
abla^2 - \partial_t^2) \boldsymbol{E} = \partial_t \boldsymbol{J}_{ ext{eff}}$$

 $\textbf{\textit{E}} = \textbf{\textit{E}}_{\text{DM}} + \textbf{\textit{E}}_{\text{response}}$

E _{DM} (specific)	E _{response} (homogeneous)		
$(abla^2 - \partial_t^2) oldsymbol{\mathcal{E}}_{DM} = \partial_t oldsymbol{J}_{eff}$	$(abla^2 - \partial_t^2) oldsymbol{\mathcal{E}}_{response} = 0$		
Field "sourced by" DM	Cavity response to cancel $\textit{\textbf{E}}_{\parallel}$ at boundary		
Constant in space	(Slowly) varying with $k=m_{\mathcal{A}'}$		
$oldsymbol{B}_{DM}=0$	$oldsymbol{B}_{response} eq 0$		

ADMX/DM Radio Ampère's Law Argument

$$BR \sim \oint \boldsymbol{B} \cdot d\boldsymbol{\ell} = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

$$B\sim arepsilon m_{A'}^2 RA'\sim arepsilon m_{A'} R\sqrt{
ho_{\mathsf{DM}}}$$

Backup Slides

ADMX/DM Radio Solution

$$m{E}=m{E}_{
m DM}+m{E}_{
m response}\propto m_{A'}^2(R^2-r^2)$$

$$m{B}=-rac{i}{m_{A'}}
abla imes m{E} \propto m_{A'} r$$

DISTANCE FROM CENTER OF EARTH

	Core	Lower	lonosphere		IPM
		Atmosphere	σ_{\shortparallel}	σ_{\perp}	
$\sigma (\omega_p) [eV]$	100	10^{-18}	10^2	10^{-8}	10^{-10}
<i>h</i> [km]	3000	5	100		$3 imes 10^5$
δ [km]	0.03	10 ⁸	2	1000	2
Shield?	Yes	No	???		Yes

Backup Slides

Vector Spherical Harmonics

- Three types of vector spherical harmonics: $m{Y}_{\ell m}, \ m{\Psi}_{\ell m}, \ m{\Phi}_{\ell m}$
- Only $\ell = 1$ relevant for us
- Real and imaginary parts of $m = \pm 1$ oriented along x- and y-axes

Spherical Modes

Backup Slides

Full TM Modes

$$\boldsymbol{E}_{\mathsf{TM}} = \sum_{\ell m} \left(-\frac{\ell(\ell+1)g_{\ell m}(m_{A'}r)}{m_{A'}r} \boldsymbol{Y}_{\ell m} - \left(g_{\ell m}'(m_{A'}r) + \frac{g_{\ell m}(m_{A'}r)}{m_{A'}r} \right) \boldsymbol{\Psi}_{\ell m} \right) e^{-im_{A'}t}$$

$$m{B}_{\mathsf{TM}} = -i\sum_{\ell m} g_{\ell m}(m_{A'}r) \Phi_{\ell m} e^{-im_{A'}t}$$

Backup Slides

Earth Signal

• Only TM modes necessary!

$$B\propto \sum_{m=-1}^{1}(arepsilon m_{A'}^2 RA_m')\Phi_{1m}$$

• Has particular Φ_{1m} spatial pattern that we can search for!

Earth Field Oscillations

Earth Signal with Rotation

• Earth signal without rotation:

$$B = \sqrt{\frac{\pi}{3}} \varepsilon m_{A'}^2 R \sum_{m=-1}^{1} A'_m \Phi_{1m} e^{-im_{A'}t}$$

• Since $\Phi_{1m} \propto e^{im\phi}$, can account for rotation of earth as

$$B = \sqrt{\frac{\pi}{3}} \varepsilon m_{A'}^2 R \sum_{m=-1}^{1} A'_m \Phi_{1m} e^{-i(m_{A'} - 2\pi f_d m)t},$$

where $f_d = 1/(\text{sidereal day})$.

• As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E _{response,TM}	B TE	B_{TM}
LO	X	\sim		
NLO	X	×		
NNLO	?	?		
NNNLO	?	?		

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E _{response,TE}	E _{response,TM}	B_{TE}	B_{TM}
LO	X	\sim		
NLO	X	X		
NNLO	?	?		
NNNLO	?	?		

• B_{TM} higher order than E_{TM} , but B_{TE} lower order than E_{TE}

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E _{response,TM}	B _{TE}	B _{TM}
LO	X	$\overline{\checkmark}$	X	X
NLO	X	X	?	\checkmark
NNLO	?	?	?	X
NNNLO	?	?	?	?

• B_{TM} higher order than E_{TM} , but B_{TE} lower order than E_{TE}

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E _{response,TM}	B _{TE}	B _{TM}
LO	X	$\overline{\checkmark}$	X	X
NLO	X	×	?	\checkmark
NNLO	?	?	?	X
NNNLO	?	?	?	?

- **B**_{TM} higher order than **E**_{TM}, but **B**_{TE} lower order than **E**_{TE}
- As long as our search projects onto Φ_{1m} , we can just look for $m{B}_{\mathsf{TM}}!$

Backup Slides

Analysis Difficulties

- What we'd like to do:
 - Project onto Φ_{1m} modes
 - Fourier transform
 - Look for single-frequency peak

Backup Slides

Analysis Difficulties

- What we'd like to do:
 - Project onto Φ_{1m} modes
 - Fourier transform
 - Look for single-frequency peak Total time > coherence time

Noise variations/correlations Active stations highly variable

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

Time Series Partitioning

- Split time series into chunks of length $T_{\rm coh}$
- Find single-frequency signal size z_k in each chunk k separately
- Combine results incoherently, i.e. $\sum_{k} |z_k|^2$
- Utilize Bayesian framework to derive posterior for ε

Backup Slides

Time Series Partitioning

- Split time series into chunks of length $T_{\rm coh}$
- Find single-frequency signal size z_k in each chunk k separately
- Combine results incoherently, i.e. $\sum_{k} |z_k|^2$
- Utilize Bayesian framework to derive posterior for ε

Bayesian Analysis

• Analysis variables:

$$z_{ik} \sim rac{\mathsf{Data}}{\sqrt{\mathsf{Noise}}} \qquad s_{ik} \sim rac{\mathsf{Signal}}{\sqrt{\mathsf{Noise}}}$$

• Likelihood of data z_{ik} given coupling ε

$$\mathcal{L}(\{z_{ik}\}|arepsilon) \propto \prod_{i,k} rac{1}{3 + arepsilon^2 s_{ik}^2} \exp\left(-rac{3|z_{ik}|^2}{3 + arepsilon^2 s_{ik}^2}
ight)$$

• Definition of bound $\hat{\varepsilon}$ (using Jeffreys prior $p(\varepsilon)$)

$$\int_0^{\hat{\varepsilon}} d\varepsilon \ \mathcal{L}(\{z_{ik}\}|\varepsilon) \cdot p(\varepsilon) = 0.95$$

Backup Slides

Coherence Time Approximation

Backup Slides

Candidate Rejection

- Identified 30 signal candidates by comparing $\sum_{i,k} |z_{ik}|^2$ to $\chi^2\text{-distribution}$
- Tested candidates with resampling analysis
 - Reran analysis with 4 subsets of time and saw if z_{ik} consist with signal
 - Also with 4 subsets of stations
- All failed one, the other, or joint resampling (except two near Nyquist frequency f = 1/(2 min))