Probing a minimal $U(1)_X$ model at future e^-e^+ collider via the fermion pair production channel

Based on : 2104.10902

In collaboration with P.S. Bhupal Dev Yutaka Hosotani Sanjoy Mandal

Arindam Das Hokkaido IIniv Hokkaido University DPF2021 July 12 – 15, 2021

Introduction

The Standard Model of Particle Interactions

Three Generations of Matter

Strongly established Few of the very interesting anomalies :

Tiny neutrino mass and flavor mixings Relic abundance of dark matter...

Unkown-

SM can not explain them

Over the decades experiments have found each and every missing pieces

> Verified the facts that they belong to this family

Finally at the Large Hadron collider Higgs has been observed

Its properties must be verified

with interesting shortcomings

Particle Content

Dobrescu, Fox; Cox, Han, Yanagida; AD, Okada, Raut; AD, Dev, Okada; Chiang, Cottin, AD, Mandal; AD, Takahashi, Oda, Okada

		$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	
	q_L^i	3	2	+1/6	x_q
	u_R^i	3	1	+2/3	x_u
	d_R^i	3	1	-1/3	x_d
	ℓ^i_L	1	2	-1/2	x_ℓ
	e_R^i	1	1	-1	x_{ϵ}
	Η	1	2	+1/2	x'_H
	N_R^i	1	1	0	$x_{ u}$
	Φ	1	1	0	x'_{Φ}
3 ger	neratio	ns of			
SM s neuti	inglet rinos (a	right hand anomaly f	ded ree)	the a	Cha nom
	3			<i>U</i> (1)	X b
\mathcal{L}_Y :	$> - \sum_{i,j=1}^{3}$	$\sum_{j=1}^{i} Y_D^{ij} \overline{\ell_L^i} H$	$N_{R}^{j} - \frac{1}{2}\sum_{i}^{N_{R}^{j}}$	$\sum_{k=k}^{3} Y_N^k \Phi \overline{N}$	$\overline{\frac{k}{R}}^{c}N$
		$m_D^{ij} = \frac{Y}{\sqrt{2}}$	$\frac{\frac{D}{D}}{\sqrt{2}}v_h$	m_{N^i} =	$=\frac{Y_N^i}{\sqrt{2}}$
					· · · · · · · · · · · · · · · · · · ·

Higgs potential

$$V = m_h^2 (H^{\dagger} H) + \lambda (H^{\dagger} H)^2 + m_{\Phi}^2 (\Phi^{\dagger} H)^2 + m_{\Phi$$

 $U(1)_X$ breaking Electroweak breaking

$$\langle \Phi \rangle = \frac{v_{\Phi} + \phi}{\sqrt{2}} \qquad \langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v+h \\ 0 \end{pmatrix}$$

Mass of the neutral gauge boson Z' M_{Z}

Neutrino masss $\mathscr{L}^{\text{mass}} = -Y_{\nu}^{\alpha\beta}\overline{\ell_L^{\alpha}}HN_R^{\beta} - Y_N^{\alpha}\Phi\overline{N_R^{\alpha c}}N_R^{\alpha} + \text{h.c.}$

$$m_{N_{\alpha}} = \frac{Y_N^{\alpha}}{\sqrt{2}} v_{\Phi}, \quad m_D^{\alpha\beta} = \frac{Y_{\nu}^{\alpha\beta}}{\sqrt{2}} v. \quad m_{\nu}^{\text{mass}} =$$

$\Phi^{\dagger}\Phi) + \lambda_{\Phi}(\Phi^{\dagger}\Phi)^{2} + \lambda'(H^{\dagger}H)(\Phi^{\dagger}\Phi)$

$$v \simeq 246 \,\text{GeV}, v_{\Phi} > > v_h$$

$$g_{Z'} = g' \sqrt{4v_{\Phi}^2 + \frac{1}{4}x_H^2 v_h^2} \simeq 2g' v_{\Phi}.$$

$$\begin{pmatrix} 0 & m_D \\ m_D^T & m_N \end{pmatrix}$$

$$m_{\nu} \simeq -m_D m_N^{-1} m_D^T$$

Seesaw

Interaction between the quarks and Z' $\mathcal{L}^q = -g'(\overline{q}\gamma_\mu q_{x_L}^q P_L q + \overline{q}\gamma_\mu q_{x_R}^q P_R q)Z'_\mu$

Interaction between the leptons and Z' $\mathcal{L}^{\ell} = -g'(\bar{\ell}\gamma_{\mu}q_{x_{L}}^{\ell}P_{L}\ell + \bar{e}\gamma_{\mu}q_{x_{R}}^{\ell}P_{R}e)Z'_{\mu}$

Partial decay width

Charged fermions $\Gamma(Z' \rightarrow 2f) =$

light neutrinos $\Gamma(Z' \to 2\nu)$

heavy neutrinos $\Gamma(Z' \rightarrow 2N) =$

$$= N_c \frac{M_{Z'}}{24\pi} \left(g_L^f \left[g', x_H, x_\Phi \right]^2 + g_R^f \left[g', x_H, x_\Phi \right]^2 \right)$$

$$=\frac{M_{Z'}}{24\pi} g_L^{\nu} \left[g', x_H, x_\Phi\right]^2$$

$$\frac{M_{Z'}}{24\pi} g_R^N \left[g', x_\Phi \right]^2 \left(1 - 4 \frac{m_N^2}{M_{Z'}^2} \right)^{\frac{3}{2}}$$

Implica

ations of the choices of x_H keeping $x_{\Phi} = 1$								1				
No interaction with e_R										No interaction with d_R		
	1							b	T			
	$\left \mathrm{SU}(3)_c \right $	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_X$	-2	-1	-0.5	0	$\left 0.5 \right $	1	2	
					$U(1)_R$			B-L				
q_L^i	3	2	$\frac{1}{6}$	$x'_q = \frac{1}{6}x_H + \frac{1}{3}x$	Φ 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{3}$	
$\left u_{R}^{i} \right $	3	1	$\frac{2}{3}$	$x'_u = \frac{2}{3}x_H + \frac{1}{3}x$	Φ -1	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{2}$	1	5 3	
d_R^i	3	1	$-\frac{1}{3}$	$x'_d = -\frac{1}{3}x_H + \frac{1}{3}x$	Φ 1	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$	0	$-\frac{1}{3}$	
ℓ_L^i	1	2	$-\frac{1}{2}$	$x'_{\ell} = -\frac{1}{2}x_H - x$	Φ 0	$-\frac{1}{2}$	$-\frac{3}{4}$	-1	$\left \frac{5}{4} \right $	$-\frac{3}{2}$	$\left -2\right $	
e_R^i	1	1	-1	$x'_e = -x_H - x$	Φ 1	0	$-\frac{1}{2}$	1	$\left -\frac{3}{2}\right $	-2	-3	
$\left N_{R}^{i} ight $	1	1	0	$x'_{\nu} = -x$	Φ -1	-1	-1	-1	-1	-1	-1	
H	1	2	$-\frac{1}{2}$	$\left -\frac{x_H}{2}\right = -\frac{x_H}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\left \frac{1}{4} \right $	$\frac{1}{4}$	$\left \begin{array}{c}1\end{array}\right $	
Φ	1	1	0	$2x_{\Phi} = 2x$	Φ 2	2	2	2	$\left \begin{array}{c}2\end{array}\right $	2	$\left \begin{array}{c}2\end{array}\right $	

No interaction with left handed fermions V No interaction with u_R

6

Phenomenological aspects of the model

New particles Z' boson Heavy Majorana Neutrino $U(1)_X$ Higgs boson Phenomenology Z' boson production and decay Heavy neutrino production Dark Matter collider $U(1)_X$ Higgs phenoemenology : Vacuum Stability Leptogenesis and many more

Fermionic pair production form the Z'

Limits on $M_{Z'}$ and g' can also be obtained from dilepton and dijet searches at the LHC

$$g' = \sqrt{g_{\text{Model}}^2 \left(\frac{\sigma_{\text{ATLAS}}^{\text{Obs.}}}{\sigma_{\text{Model}}}\right)}$$

Limits on the model parameters Considering the limit $M_{Z'} > \sqrt{s}$ and appling effective theory we find the limits on $\frac{M_{Z'}}{g'}$ using LEP – II (1302.3415) and (prospective) ILC (1908.11299) $:^{g'}$ $\frac{\pm 4\pi}{(1+\delta_{ef})(\Lambda^{f\pm}_{AB})^2} (\overline{e}\gamma_{\mu}P_A e)(\overline{f}\gamma_{\mu}P_B f)$ Z' exchange matrix element for our process $\frac{(g')^2}{M_{Z'}^2 - s} [\overline{e}\gamma_\mu (x_\ell' P_L + x_e' P_R) e] [\overline{f}\gamma_\mu (x_{f_L} P_L + x_{f_R} P_R) f]$ Matching the above equations we obtain $M_{Z'}^2 - s \ge \frac{{g'}^2}{{}^{\Lambda}\pi} |x_{e_A} x_{f_B}| (\Lambda_{AB}^{f\pm})^2$ Indicates a large VEV scale can be probed from LEP – II to ILC1000 via ILC250 and ILC500 Shows limits on $M_{Z'}$ vs g' for LEP – II, ILC250, ILC500 and ILC1000

For heavier Z', the limits from e^-e^+ colliders are stronger than the current LHC results

x_H=2

 M_{Z} [TeV] For heavier Z', the limits from e⁻e⁺ colliders are stronger than the current LHC results

$$e^-e^+ \rightarrow \mu^+\mu^-$$

 $M_{Z'} = 7.5 \text{ TeV}$

 $e^-e^+ \rightarrow e^+e^-$ for $\sqrt{s} = 3$ TeV. For $\sqrt{s} < 3$ TeV the deviation is also sizable.

Deviations in total cross sections from SM is more than 100 % for $x_H \ge 1$

Differential and integarted Left – Right Asymmetry $(e^-e^+ \rightarrow \mu^-\mu^+)$: $\mathscr{A}_{LR} | M_{Z'} = 7.5 \text{ TeV}$

Differential

$$\mathcal{A}_{\mathrm{LR}}(\cos\theta) = \frac{\frac{d\sigma_{\mathrm{LR}}}{d\cos\theta}(\cos\theta) - \frac{d\sigma_{\mathrm{RL}}}{d\cos\theta}(\cos\theta)}{\frac{d\sigma_{\mathrm{LR}}}{d\cos\theta}(\cos\theta) + \frac{d\sigma_{\mathrm{RL}}}{d\cos\theta}(\cos\theta)}$$

Differential Left – Right, Forward – Backward Asymmetry ($e^-e^+ \rightarrow \mu^-\mu^+$) : $\mathscr{A}_{LR, FB}$

Statistical error

$$\Delta \mathcal{A}_{LR,FB} = 2 \frac{(n_3 + n_2) \left(\sqrt{n_1} + \sqrt{n_4}\right) + (n_1 + n_4) \left(\sqrt{n_3} + \sqrt{n_2}\right)}{(n_1 + n_4)^2 - (n_3 + n_2)^2} A_{LR,FB}$$

Differential

 $M_{Z'} = 7.5 \text{ TeV}$

$$\mathcal{A}_{LR,FB}(\cos\theta) = \frac{\left[\sigma_{\mathrm{LR}}(\cos\theta) - \sigma_{\mathrm{RL}}(\cos\theta)\right] - \left[\sigma_{\mathrm{LR}}(-\cos\theta) - \sigma_{\mathrm{RL}}(-\cos\theta)\right]}{\left[\sigma_{\mathrm{LR}}(\cos\theta) + \sigma_{\mathrm{RL}}(\cos\theta)\right] + \left[\sigma_{\mathrm{LR}}(-\cos\theta) + \sigma_{\mathrm{RL}}(-\cos\theta)\right]}$$

Deviation from the SM

Conclusions :

of beyond the SM sceannios.

This allows us to probe heavier Z'.

including a variety of BSM aspects. 15

We are looking for a scenario where which can explain a variety

- The proposal for the generation of the tiny neutrino mass, from the seesaw mechanism, under investigation at the energy frontier. We study \mathscr{A}_{FB} , \mathscr{A}_{LR} , $\mathscr{A}_{LR, FB}$. The asymmetries are sizable at the 250 GeV and 500 GeV e^-e^+ colliders or higher in the near future. Such a model can be studied at muon colliders with high CM energy.
 - For more detail including the Bhabha scattering at e⁻e⁺ colliders see 2104.10902
- The motovation of this work is to find a new particle and/or a new force carrier as a part of the of the new physics searches

