

Search for new particles in events with energetic jets and large MET with CMS Run-2 data (Monojet/Mono-V)

DPF 2021 7/12/2021 Siqi Yuan, on behalf of the CMS collaboration

7/12/2021

CMS Experiment at the LHC, CERN

Data recorded: 2018-Jul-14 21:03:24 EDT

Run / Event / LS: 319639 / 1418428259 / 986

MET,	
pt = 1691.8	2 GeV
eta = 0	
phi = 1.726	

Unbalanced transverse momentum indicates invisible particles produced in the event!

We use the word **Monojet** to

refer to this kind of events

Analysis tag: CMS-EXO-20-004 Analyzed 2017-2018 data, combined with published 2016 result

Physics Analysis summary (PAS) publicly available <u>here</u>

Signal model Interpretations

Dark matter simplified model with a color-neutral mediator

- Simple generic dark model that produce dark matter through some mediators
- mediator can be spin0 or spin1
- Fix couplings to benchmark values then scan in mass or,
- fix DM mass and scan in mediator mass and one of the coupling values

Special case – jets from V(qq) decays! (Mono-V)

Additional categories to capture these events based on V(qq) jet tagging:

- > Traditional: N-subjetiness (used in 2016 analysis)
- > New: DeepAK8 (Deep neural network)

Signal regions – define 3 categories!

Common Cuts

 p_T^{miss} > 250 GeV $\Delta \phi(j, recoil) > 0.5$ for 4 leading jets (PF MET – Calo MET) / Recoil < 0.5 MET filters applied

cleaning cuts

Mono-V

Leading AK8 jet:

- p_T >250 GeV, $|\eta|$ <2.4
- Pruned mass in [65,120]
- Passing nominal deepAK8 WvsQCD tagger
- Further split into high purity and low-purity

Monojet

No Mono-V event Leading AK4 jet

- (CHS jet with tight jet ID and JES&JER applied)
- *p T*>100 GeV, |*n*|<2.4, NHF<0.8 && CHF>0.1

7/12/2021

Estimation of main background

All regions exist in the three categories defined on previous slide: "Monojet", "Mono-V high purity", and "Mono-V low purity"

Control region event selections

41.5 fb⁻¹ (13 TeV)

Post-fit (W $\rightarrow \mu v$)

Pre-fit (W → uv

Other Backgrounds

Data

- = Signal region selections
- + replace p_T^{miss} to **Recoil** =
- + remove corresponding lepton/photon veto
- + region-dependent selections below:

Single electron CR

exactly 1 electron

Single muon CR

exactly 1 muon

CMS Preliminary

Monoie

10

10

CMS Preliminary

> 10 09 05

/ ents / 10

10

1400

Recoil [GeV]

- Exactly 1 tight photon ٠
- photon $p_{\rm T} > 230 {\rm GeV}$

🔶 Data

mimics how Z/W p_T fakes p_T^{miss} in SR

= = \Rightarrow Recoil $\coloneqq p_T^{miss} + \sum p_T^{leptons/photons}$

 $\approx p_T^{Z/W}$ in CR

- exactly 2 electrons
- 60<pair mass<120
- opposite charge ٠

Double muon CR

- exactly 2 muons
- 60<pair mass<120
- opposite charge

7/12/2021

Siqi Yuan - CMS Monojet/V analysis @ DPF2021

1000

1200

Signal Extraction Strategy: combined fit

 \times number of channels and years (6 in total)

- Maximize likelihood between data and prediction, likelihood function defined in <u>backup</u>
- **Unconstrained parameters**: per-bin (in Recoil) normalization of Z(vv) in SR, signal strength
- **Constrained parameters**: numerous nuisance parameters that allow the process ratios vary within syst./stat. uncertainties (each ratio represented by a link on the left diagram)
- Uncertainties common between regions mostly cancel out! Remaining uncertainties are e.g. lepton/photon ID. Summary of important uncertainties

7/12/2021

p_T^{miss} distribution signal region year 2017

2018 result similar and in backup

Background-only fit i.e. signal strength set to 0

Post-fit estimation has good agreement with data

Pre-fit excess in mono-V low purity region consistent with trend in W CR \rightarrow No post-fit excess

➔ No significant excess

monojet

mono-V (high purity)

mono-V (low purity)

Full Run-2: Exclude m_{med} <≈ 2 TeV (≈2.2 TeV expected) for small m_{DM} improvement relative to 2016 by ≈ 200 GeV in m_{med}

reached 1 order of magnitude lower than g_q bench mark value

7/12/2021

Model interpretation Higgs invisible model

Set limit on standard-model Higgs invisible branching fraction

7/12/2021

Analysis reinterpretation: MadAnalysis

- **MadAnalysis** is a framework for the reinterpretation of existing analyses in terms of arbitrary new physics models
- Implemented monojet channel in MadAnalysis(i.e. • applies monojet selection on your model), link to the implementation
- Validated the implementation by comparing with this analysis
- HEPData entry with **simplified likelihood**(yields and • covariance matrix); signal cut-flows, signal generator cards, etc.

screenshot

7/12/2021

Summary

- **Presented the monojet + mono-V analysis** using full 2017 + 2018 data, and have combined with published 2016 result **for the full Run-2 result**
- We do not see any significant deviation from SM expectations, but instead we set:
 - upper limits on Higgs boson to invisible branching ratio
 - upper limits on the production of Dark Matter in the **simplified Dark Matter model** with vector/axial-vector/scalar/pseudo-scalar mediators
 - upper limits on the production of Dark Matter through fermion portal mediator
 - limits on the reduced Planck scale as a function of number of extra dimensions in the ADD extra dimension model
 - limits on the **leptoquark** coupling as a function of leptoquark mass
- Better limits are observed in the above models compared to the published 2016-only result, some are among the most restrictive limits to date
- Implemented monojet category in MadAnalysis for re-interpretation

Thank you for your interest in this analysis!

Backup

The CMS detector – where we take data

7/12/2021

Another example event display

CMS Experiment at the LHC, CERN

Data recorded: 2017-Jun-28 07:15:14 EDT

Run / Event / LS: 297620 / 285430183 / 201

Energetic jet on one side

Missing energy on the other side

Signal model Interpretations (more diagrams)

Object definitions

Electrons:

- Tight = POG cut-based tight WP
 - $p_T > 40 GeV, |\eta| < 2.5$
- Loose = POG cut-based
 - $p_T > 10 GeV$, $|\eta| < 2.5$

Photons:

- Tight = POG cut-based tight WP
 - $p_{\rm T} > 230 {
 m GeV}, |\eta| < 1.4442$
- Loose = POG cut-based veto WP
 - $p_{\rm T} > 15 {\rm GeV}, |\eta| < 2.5$

Muons:

- Tight = POG cut-based tight WP
 - $p_{\mathrm{T}} > 20 \mathrm{GeV}$, $|\eta| < 2.4$
- Loose = POG cut-based veto WP
 - $p_{\rm T} > 10 {
 m GeV}$, $|\eta| < 2.4$

At least one tight electron/photon/muon is required in the corresponding CRs Loose electrons/photons/muons are also used in vetoing events in SR (see region definitions) Taus and B-tagged jets are only used for veto

Taus:

- $p_{\rm T} > 18 {
 m GeV}$, $|\eta| < 2.3$
- Old DM ID + VLoose MVA ISO

B-tagged jets:

- $p_{\rm T} > 20 {\rm GeV}$, $|\eta| < 2.4$
- DeepCSV medium

Event selection summary table

Category	Variable / Description	Selection
	Muon (electron) veto	$p_{\rm T} > 10 { m GeV}$ and $ \eta < 2.4(2.5)$
	au lepton veto	$p_{ m T} > 18{ m GeV}$ and $ \eta < 2.3$
	Photon veto	$p_{ m T} > 15{ m GeV}$ and $ \eta < 2.5$
All	Bottom jet veto	DeepCSV "medium", $p_{\rm T} > 20 \text{GeV}$, $ \eta < 2.4$
	$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 \mathrm{GeV}$
	$\Delta p_{\rm T}^{\rm miss}({\rm PF-Calorimeter})$	< 0.5
	$\Delta \phi(\text{PF}, \text{Charged})$	< 2 rad
	$\Delta \phi(ec{p}_{ ext{T}}^{ ext{miss}},ec{p}_{ ext{T}}^{ ext{j}})$	> 0.5 rad
	$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{j}})$	> 0.5 rad
		no AK4 jet with $p_{\rm T} > 30 {\rm GeV}$,
All (2018)	Calorimeter failure mitigation	$-1.57 < \phi < -0.87, -3.0 < \eta < -1.3.$
		$\phi(\vec{p}_{\rm T}^{\rm miss}) \notin [-1.62, -0.62] \text{ if } p_{\rm T}^{\rm miss} < 470 {\rm GeV}.$
Monoiot	Loading AV4 ist	n > 100 CoV and $ u < 2.4$
wonojet	Leading AN4 jet	$p_{\rm T}$ > 100 GeV and $ \eta $ < 2.4
Mono-V	Leading AK8 jet	$p_{\rm T}$ > 250 GeV, $ \eta $ < 2.4, 65 < $m_{\rm SD}$ < 120 GeV Subcategorization based on DeepAK8 score

Fit likelihood function

go back to main text

7/12/2021

List of most important experiment uncertainties

Source	Process	Uncertainty
Electron trigger	$W_{\rm SR}/W_{ev}, Z_{\rm SR}/Z_{ee}$	1%
$E_{\mathrm{T}}^{\mathrm{miss}}$ trigger	$W_{\rm SR}/W_{e(\mu)\nu}$	1 -2 % (shape)
	$Z_{\rm SR}/Z_{\mu\mu}$	2-3% (shape)
Photon trigger	$Z_{\rm SR}/\gamma_{\rm CR}$	2%
Photon $p_{\rm T}$ scale	$Z_{\rm SR}/\gamma_{\rm CR}$	<4% (shape)
Muon-reco efficiency per muon	$W_{\rm SR}/W_{\mu\nu}, Z_{\rm SR}/Z_{\mu\mu}$	1%
Muon-ID efficiency per muon	$W_{\rm SR}/W_{\mu\nu}, Z_{\rm SR}/Z_{\mu\mu}$	1%
Muon-iso. efficiency per muon	$W_{\rm SR}/W_{\mu\nu}, Z_{\rm SR}/Z_{\mu\mu}$	1%
Electron-reco efficiency per ele.	$W_{\rm SR}/W_{ev}$, $Z_{\rm SR}/Z_{ee}$	1%
Electron-ID efficiency per ele.	$W_{\rm SR}/W_{ev}$, $Z_{\rm SR}/Z_{ee}$	3%
Photon-ID efficiency	$Z_{\rm SR}/\gamma_{\rm CR}$	4-13% (shape)
Muon veto	$W_{\rm SR}/W_{e(\mu)\nu} Z_{\rm SR}/W_{\rm SR}$	< 1% (shape)
Electron veto	$W_{\rm SR}/W_{e(\mu)\nu} Z_{\rm SR}/W_{\rm SR}$	2% (shape)
Tau veto	$W_{\rm SR}/W_{e(\mu)\nu}, Z_{\rm SR}/W_{\rm SR}$	1–2% (shape)
Prefiring	$Z_{\rm SR}/Z_{\rm CR}, W_{\rm SR}/W_{\rm CR}$	< 1% (shape)

- Important uncertainties that have effect on Transfer Factors
- Correlated between bins of recoil and categories
- Uncorrelated between years
- Uncertainties e.g. on luminosity, jes and jer, affect both numerator and denominator in TF, and thus cancel out partially or fully

Summary of uncertainties for other small background in backup

Summary of uncertainties on small background

Source	Process	Uncertainty
Luminosity	All	2.5 %/ 2.3%
Electron trigger	All in 1e CR	1%
$E_{\rm T}^{\rm miss}$ trigger	All in SR and 1μ CR	2%
Jet $/E_{\rm T}^{\rm miss}$ energy calibration	All	5% (shape)
Muon-reco efficiency per muon	All in muon CRs	1%
Muon-ID efficiency per muon	All in muon CRs	1%
Muon-iso efficiency per muon	All in muon CRs	1%
Electron-reco efficiency per ele.	All in electron CRs	1%
Electron-ID efficiency per ele.	All in electron CRs	3%
b-jet veto	Top in SR and all CRs	6%
	All remaining in SR and all CRs	2%
Top $p_{\rm T}$ reweight	Тор	10%
Top norm	Тор	10%
Diboson mixed EWK-QCD corr.	Diboson	up to 10% (shape)
Diboson normalization	Diboson	10%
$Z(\ell\ell) + jets norm$	$Z(\ell \ell) + jets$ (SR)	20%
QCD	QCD in SR	from 20% up to $> 100\%$ (shape)
Fake muons	QCD in $W_{\mu u}$	50%
Jet-to-electron fakes	QCD in W_{ev}	75%
Photon-to-electron fakes	$\gamma + \text{jets in } W_{e\nu}$	20%

uncertainties on transfer factors

7/12/2021

Data Validation: Pre-fit control region ratios (year 2017)

Ratios between the control regions A proxy for validating transfer factors

- Overall good agreement with data
- 2017 ratios hint at need to pull W relative to others (accomplished mainly by lepton ID + theory pulls, see <u>backup</u>)

7/12/2021

Data Validation: Pre-fit control region ratios (year 2018)

Ratios between the control regions A proxy for validating transfer factors

- Overall good agreement with data
- 2017 ratios hint at need to pull W relative to others (accomplished mainly by lepton ID + theory pulls, see <u>backup</u>)

7/12/2021

p_T^{miss} distribution signal region year 2018

monojet

mono-V (high purity)

mono-V (low purity)

59.7 fb⁻¹ (13 TeV) 59.7 fb⁻¹ (13 TeV) 59.7 fb⁻¹ (13 TeV) ∧a9 10³ ∧ 9 10[€] ∧₁₀₄ Z(vv)+jets 🔶 Data Z(vv)+jets Z(vv)+jets Data - Data CMS Preliminary CMS Preliminary **CMS** Preliminarv Events / Mono-V (high-purity) Mono-V (low-purity) Monojet W(lv)+iets ww/zz/wz W(lv)+jets ww/zz/wz Events / 10³ ww/zz/wz W(lv)+iets Events / 10⁴ 2018 2018 2018 10² QCD QCD QCD Top guark Top quark Top quark H(inv), BR = 25% H(inv), BR = 25% H(inv), BR = 25% Axial, m_{med} = 2 TeV Axial, m_{med} = 2 TeV Axial, m_{med} = 2 TeV 10 10 m., = 1 GeV m, = 1 GeV m, = 1 GeV 10-10-10-10 10-2 10^{-2} Pred. Pred. Pred. 12 1 0.0 0.0 0.0 Data 0.0 🔶 Post-fit Post-fit 🔶 Pre-fit + Pre-fit 8.0 Data 0.0 (Data-Pred.) £ Data-Data 1200 1400 900 1000 400 600 800 1000 300 400 500 600 700 800 300 400 500 600 700 800 900 1000 p_{τ}^{miss} [GeV] $p_{\tau}^{\text{miss}}\left[\text{GeV}\right]$ p_{τ}^{miss} [GeV]

Same conclusion as 2017

➔ No significant excess

7/12/2021

Wide jet tagging efficiencies for reinterpretation

Model interpretation Simplified DM model: Spin-1 mediator

improvement relative to 2016 by \approx 200 GeV in m_{med} (\approx 300 GeV expected)

Comparison of simplified model constrains to direct detection experiments

Point-to-point conversion from $m_{\text{med}} - m_{\text{DM}}$ countour to $\sigma_{\text{DM-nucleon}} - m_{\text{DM}}$ plane Show stronger limit at small m_{DM} for $\sigma_{\text{spin independent}}$ up to $m_{\text{DM}} = 1$ TeV for $\sigma_{\text{spin dependent}}$ Note that the **red lines** are subject to specific choice of couplings

7/13/2021

Simplified DM model: Spin-1 mediator coupling limit

More than one additional order of magnitude in coupling limit approached compared to the nominal limit with 2D contour

Same plots with vector mediators in backup

7/12/2021

Simplified DM model: Spin-1 mediator coupling limit for vector mediators

same plots with axial vector mediators

There is also 2D limit contour on the m_{med} - m_{DM} plane in <u>backup</u> Siqi Yuan - CMS Monojet/V analysis @ DPF2021

31

Two-dimensional exclusion in the simplified DM model with pseudoscalar mediator

ADD extra dimensions

Fermion portal DM and LQ(qv)

Both cases: Single, pair and t channel production

Max exclusion around 1.5 TeV for m_{Φ}

New interpretation, not done in '16

low MLQ: $\lambda \rightarrow 0$, pair prod alone is excluded higher MLQ: single prod. dominates, exclude λ =1

Higgs invisible model (fine-binned information)

7/12/2021

Table of exclusion limits in ADD model

d	Lower limit on M _D		
	Expected	Observed	
2	12.2	10.7	
3	9.0	8.0	
4	7.4	6.7	
5	6.5	6.0	
6	5.9	5.5	
7	5.6	5.2	