DARK MATTER AND NEUTRINO MASS IN THE RADIATIVE SEESAW MODEL

Najimuddin Khan School of Physical Sciences Indian Association for the Cultivation of Science

Contents

- * New Dark Matter Model: Outcome and signature at LHC
- * Conclusions

MODEL

It contains (i) a real scalar singlet (*S*), (ii) a vectorlike charged fermion singlet E_S^- and (ii) a vectorlike fermion doublet, $F_D = (X_1^0 \ E_D^-)^T$. Nucl.Phys.B 964 (2021) 115307, arXiv:2001.04070

Symmetries	S	F_D	Es
SU(2)	1	2	1
U(1) _Y	0	-1	-2
Z ₂	-1	-1	-1

$$\mathcal{L}_{S} = \frac{1}{2} |\partial_{\mu} S|^{2} - \frac{1}{2} k S^{2} \phi^{2} - \frac{1}{4} m_{S}^{2} S^{2} - \frac{\lambda_{S}}{4!} S^{4}$$

 $\mathcal{L}_{\mathcal{F}} = \overline{F_D} \gamma^{\mu} D_{\mu} F_D + \overline{E_S} \gamma^{\mu} D_{\mu} E_S - M_{ND} \overline{F_D} \cdot F_D - M_{NS} \overline{E_S} \cdot E_S \& \mathcal{L}_{int} = -Y_N \overline{F_D} \phi^{\dagger} E_S - Y_{fi} \overline{L}_i F_D S + h.c.$

$$\mathcal{M} = \begin{pmatrix} M_{ND} & M_X \\ M_X^{\dagger} & M_{NS} \end{pmatrix}, \ M_X = \frac{Y_N v}{\sqrt{2}}, \ \ \tan 2\beta = \frac{2M_X}{M_{NS} - M_{ND}}$$

$$M_{NS} - M_{ND} \gg M_X, \ M_{E_1^{\pm}} = M_{ND} - \frac{2(M_X)^2}{M_{NS} - M_{ND}}, \ M_{E_2^{\pm}} = M_{NS} + \frac{2(M_X)^2}{M_{NS} - M_{ND}}.$$

$$M_{\chi_1^0} = M_{ND}, \ M_S^2 = \frac{m_S^2 + kv^2}{2}, \ M_H^2 = 2\lambda v^2.$$

 $M_{E_1^{\pm}} < M_{X_1^0} < M_{E_2^{\pm}}, \quad S \text{ for } M_S < M_{E_1^{\pm}} \text{ can serve as a viable DM candidate.}$

N KHAN (KHANPHYSICS.123@GMAIL.COM)

CONSTRAINTS ON THIS MODEL

• Stability:
$$\lambda(\Lambda) > 0$$
, $\lambda_{\mathcal{S}}(\Lambda) > 0$ and $\kappa(\Lambda) + \sqrt{\frac{2\lambda(\Lambda)\lambda_{\mathcal{S}}(\Lambda)}{3}} > 0$

• Unitarity:
$$\lambda \leq 8\pi$$
 and $\left| 12\lambda + \lambda_{S} \pm \sqrt{16\kappa^{2} + (-12\lambda + \lambda_{S})^{2}} \right| \leq 32\pi$

• LHC di-photon signal strength
$$\mu_{\gamma\gamma} = \frac{\Gamma(H \to \gamma\gamma)BSM}{\Gamma(H \to \gamma\gamma)SM}$$
,
 $\Gamma(H \to \gamma\gamma)_{BSM} = A \Big| \sum_i Q_i^2 Y_{Ni} F_{1/2}(\tau_{E_i^{\pm}}) + C_{SM} \Big|$
 $Y_{N1} = \sqrt{2} \cos\beta \sin\beta Y_N$ and $Y_{N2} = -\sqrt{2} \cos\beta \sin\beta Y_N$

- EWPT: $\Delta S_{BSM} < 0.05 \pm 0.11, T_{BSM} < 0.09 \pm 0.13$ and $\Delta U_{BSM} < 0.011 \pm 0.11$
- Lepton flavor violation BR($\mu \rightarrow e\gamma$) < 4.2 × 10⁻¹³ at 90% CL. MEG-II Collaboration: EPJC 78, 380 (2018)

$$\mathrm{BR}(\mu \rightarrow \mathbf{e}\gamma) = \frac{3\alpha_{em}}{64\pi G_F^2} \Big| \cos^2\beta \; Y_{f1}^{\dagger} Y_{f2} \frac{F(M_{E_1}^2 \neq M_S^2)}{M_S^2} + \sin^2\beta \; Y_{f1}^{\dagger} Y_{f2} \frac{F(M_{E_2}^2 \neq M_S^2)}{M_S^2} \Big|^2$$

• Neutrino mass:
$$(M_{\nu})_{ij} = \frac{1}{16\pi^2} (Y_{fi}^{\dagger} Y_{fi}) (\kappa \nu^2) I(M_N, M_{DM})$$

 $I(M_N, M_{DM}) = 4M_N \frac{M_{DM}^2 - M_N^2 + M_N \log(\frac{M_N^2}{M_{DM}^2})}{(M_{DM}^2 - M_N^2)^2}$

DARK MATTER

Annihilation diagrams

COLLIDER ANALYSIS

We perform a search for the lightest charged fermion E_1^{\pm} in the context of 14 TeV LHC experiments with integrated luminosity of 100 fb⁻¹ for event's process $pp \rightarrow E_1^{\pm}E_1^{\mp}$, where a SM leptons *I* is produced through decays of the charged fermion as $E_1^{\pm} \rightarrow I^{\pm}S$. Hence, in the final state, events have two same flavours opposite sign (SFOS) leptons, including significant missing transverse energy coming from the LSP *S*. Here, processes like $pp \rightarrow VV$ (V = W, Z) can add to the SM background.

Signal Region	Various Cuts			
	<i>M∥</i> [GeV]	Æ⊤[GeV]		
SR-1	100.0	100.0		
SR-2	110.0	140.0		
SR-3	120.0	200.0		

BMPs	Cross-Sections [fb]	Backgrounds	Cross-Sections [fb]
BMP-1	303.1	$pp \rightarrow WW$	28.2102
BMP-2	4.806	$pp \rightarrow WZ$	12.5581
BMP-3	2.91	$pp \rightarrow ZZ$	30.0432

Signal	Total	Benchmark points: $(M_{E_{i}^{\pm}}, M_{S})$ in GeV					
Region	number of	BMP-1 (150, 50)		BMP-2 (450, 300)		BMP-3 (500, 30)	
	Backgrounds	# events	Significance	# events	Significance	# events	Significance
SR-1	243.759	1265.44	32.574	76.535	4.276	62.7682	3.585
SR-2	78.7281	344.017	16.732	53.7787	4.672	57.2691	4.912
SR-3	22.2838	63.6517	6.866	23.5256	3.476	48.8011	5.788

N KHAN (KHANPHYSICS.123@GMAIL.COM)

COLLIDER ANALYSIS

N KHAN (KHANPHYSICS.123@GMAIL.COM)

14th JULY 2021 6 / 8

(**) We show the extended singlet scalar model with vector-like fermions have a viable dark matter and can be detected at LHC in the near future.