

Search for Dark Matter from Baryon Number Violation Process in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV

Samila Muthumuni
On behalf of the CMS collaboration
Texas Tech University
DPF 2021 Virtual Meeting
12 – 14 July, 2021

Outline

- •Introduction & Motivation
- •Model Signature
- •Data & Monte Carlo Samples
- Event Selections
- •Background Estimation
- Summary

Dark Matter in Universe

◆ According to the well-established cosmological models

Roughly 27% of the universe is made up of material known as Dark Matter (DM).

◆ Astrophysical evidence of the existence of DM

Galaxy Rotation Curve, Gravitational Lensing, Bullet Cluster etc..

◆ Possible Candidates of DM

Weakly-Interacting Massive Particles (WIMP), Axions, Gravitinos etc..

- **◆ Techniques of DM Detection**
- 1. Direct Detection
- 2. Indirect Detection
- 3. Production at Colliders

Baryon and DM density coincidence

• Baryon and DM densities in the Universe are observed to be similar [1].

$$R_{\frac{b}{dm}} = \frac{\Omega_b}{\Omega_{dm}} \cong 0.2$$

- The visible content of the universe are made up of baryons and not anti-baryons.
- Perhaps the DM mass being close to the nucleon mass can explain the matter-antimatter asymmetry of the universe via a similar mechanism as in asymmetric DM models [2].

• There exist several possible DM models to relate the baryon productions (*baryogenesis*) and the DM productions in the early universe.

- [1]: https://arxiv.org/pdf/1301.4189.pdf
- [2]: https://arxiv.org/pdf/1801.01124.pdf
- [3]: https://arxiv.org/pdf/1810.00880.pdf
- [4]: https://arxiv.org/pdf/1401.1825.pdf

Model Signature

- This *simple model of baryogenisis* introduces **baryon number** violating interactions via a set of $\sim TeV$ color-triplet scalars (X) and a $\sim 1 \, GeV$ singlet Majorana fermion (n_{DM}) that are coupled only to quarks
- The **model** is an example of *Simplified Model* and a set of four distinct parameters, which are (1): **DM Mass** $(M_{n_{DM}})$, (2): **Mediator Mass** (M_X) , (3): **Coupling to SM** (λ_1) and (4): **Coupling to DM** (λ_2) , can be scanned to search for DM.
- Jacobian-like peak for missing transverse energy (MET) distribution.

The Interaction Lagrangian is:

$$\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \epsilon^{ijk} X_{\alpha,i} \bar{d}_{\rho,j}^c \mathbf{P}_R d_{\delta,k} + \lambda_2^{\alpha,\rho} X_{\alpha}^* \bar{n}_{\mathrm{DM}\rho} \mathbf{P}_R u + \mathrm{C.C.}$$

- Final states: one b-jet + up-type quarks + MET
 - b-jet + n_{DM} + u/c (~67%)
 - b-jet + n_{DM} + t (~33%)

Data & Monte Carlo Samples

Data Sample

MET dataset is used for SR study. This work is done using the data collected by CMS experiment in 2016, 2017 and 2018 at $\sqrt{s} = 13$ *TeV* with CMS detector at LHC, which corresponds to 137 fb^{-1} . **Electron, Muon and Photon datasets** are used for the estimation of electroweak backgrounds.

◆ DM Signal Samples

A **Signal Sample** has been privately generated with MadGraph5 and processed through CMS analysis framework.

$$pp \rightarrow X + b \rightarrow n_{DM}q + b$$
 (q is an up-type quark)

Model parameters M_{X_1} , λ_1 and λ_2 will be allowed to as follows,

 $M_{X_1}(GeV)$: [1000,1500,2000,2500,3000]

 λ_1 : [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.5,1.0]

 λ_2 : [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.5,1.0]

Background Samples

Major Backgrounds

 $Z(\nu\nu) + jets$

 $W(l\nu) + jets$

 $Top (single top + t\bar{t})$

Minor Backgrounds

Diboson (WW, WZ and ZZ)

QCD

 $|\gamma + jets|$

Z(ll) + jets

Event Selection of Signal Region (SR)

In this analysis, the selection criteria for the search of **DM** in **MET +jets channel**. The event selection of **Signal Region (SR)** can be written as follows,

- * require the ak4 leading jet: $p_t > 100~GeV$ & $|\eta| < 2.5$
- * $\Delta \phi$ (jet, MET) > 0.5 in order to reject the QCD events.
- * veto the leptons (loose electrons, muons and taus) to suppress the EWK and top backgrounds.
- * veto the photons (loose ones) to reject the EWK backgrounds $Z(\nu\nu)\gamma + jets$, $W(l\nu)\gamma + jets$.
- * MET cut > 250 GeV (consistent with trigger turn on).
- * require events have only one b-tag.

Signal Region: MET

The MET distribution in SR is shown for a comparison between the predicted SM backgrounds & DM signal $(M_{X_1} = 1 \text{ TeV}, \lambda_1 = 0.1, \lambda_2 = 0.071)$.

- The major backgrounds are $Z(\nu\nu) + jets$ (54%), $Top(single\ top + t\bar{t})$ (27%) and $W(l\nu) + jets$ (18%) [the sum of those 3 backgrounds 99%] for $MET > 400\ GeV$.
- The significance is calculated as,

$$Significance = \frac{S}{\sqrt{\Delta S^2 + \Delta B^2}}$$

S = The number of signal events

 ΔS = The statistical error on signals

 ΔB = The quadratic sum of the statistical error and the systematic error (2%) on background.

• The CMS has the sensitivity to detect a DM signal over the background at **5.8 sigma significance** in b + d and b + s productions modes for 400 - 500 GeV range.

Z → νν Background Estimation

- The major background in this analysis comes from the $Z \to \nu \nu$ production.
- di-muon ($Z(\mu\mu) + jets$), di-electron (Z(ee) + jets) and single-photon ($\gamma + jets$) are used as control samples for estimating the $Z \rightarrow \nu\nu$ background.
- di-lepton mass cut (60 120 GeV) is applied to reduce the $Z(\mu\mu) + jets$ and Z(ee) + jets background events.

di-muon CR

$$R_{Z(\mu\mu)} = \frac{N_i(Z(\nu\nu))_{[SR]}}{N_i(Z(\mu\mu))_{[CR]}}$$

di-electron CR

$$R_{Z(ee)} = \frac{N_i(Z(\nu\nu))_{[SR]}}{N_i(Z(ee))_{[CR]}}$$

single-photon CR

$$R_{\gamma} = \frac{N_i(Z(\nu\nu))_{[SR]}}{N_i(\gamma)_{[CR]}}$$

Lost Lepton $(W_h + top)$ Background Estimation

- Some leptons are not reconstructed in the detector because the limited geometrical acceptance of the detector, minimum p_T requirements in muon and electron selection etc.. These leptons are called as "Lost Leptons".
- $W \to l\nu$ and Top (single $top + t\bar{t}$) background samples are combined together because each processes arise when we have lost leptons from leptonic decays of the W boson.

- The associated neutrino in Lost Lepton events will be generated large MET.
- single-muon and single-electron control regions are used to estimate Lost Lepton backgrounds.

single-muon CR

$$R_{\mu} = \frac{N_{i}(w_{l\nu} + st + t\bar{t})_{[SR]}}{N_{i}(w_{\mu\nu} + st + t\bar{t})_{[CR]}} \qquad R_{e} = \frac{N_{i}(w_{l\nu} + st + t\bar{t})_{[SR]}}{N_{i}(w_{e\nu} + st + t\bar{t})_{[CR]}}$$

single-electron CR

$$R_{e} = \frac{N_{i}(w_{l\nu} + st + t\bar{t})_{[SR]}}{N_{i}(w_{e\nu} + st + t\bar{t})_{[CR]}}$$

Estimated Background

• Number of Estimated Background events for $MET > 400 \, GeV$ can be calculated as follows:

Major Backgrounds	$N_i(MC)_{[SR]}$	Type of Control Region	$N_i(MC)_{[CR]}$	$R_i = \frac{N_i(MC)_{[SR]}}{N_i(MC)_{[CR]}}$	$N_i(DATA)_{[CR]}$	Estimated $BG = R_i \cdot N_i (DATA)_{[CR]}$
Z o u u	1766.8	di-muon	249.7	7.4	346.0	2550.6 ± 222.8
		di-electron	192.2	9.2	306.0	2813.2 ± 267.4
		single-photon	2703.1	0.6	4365.0	2853.0 ± 97.4
$Lost Lepton: W \rightarrow l\nu$ $(W_{l\nu} + Top)$	1480.3	single-muon	5555.3	0.3	5939.0	1582.6 ± 20.5
		single-electron	4024.3	0.4	4116.0	1514.1 ± 23.6

• Detail background estimation is in progress.

Summary

- We are testing a simple model of baryogenisis and DM production in early universe using data collected by CMS experiment in 2016, 2017 and 2018 at $\sqrt{s} = 13 \ TeV$, which corresponds to 137 fb^{-1} .
- The model predicts events with large MET and a b-jet as signature of DM production from baryon number violation processes at LHC.
- Estimation of background is in progress using control samples and signal is still blinded.

Thank you!

BackUp

Standard Model (SM)

- ◆ Most successful Physic theory ever, That ability to predict and explain every aspect of the quantum world makes the Standard Model (SM) a bit of a superstar.
- Fundamental particles: Quarks & Leptons (Fermions)
- Gauge Bosons: Force Carriers
- Higgs Boson
- There are four **Fundamental Forces** in the universe: Strong, Weak, Electromagnetic, and Gravity. SM covers first three.

- ◆ But while it is incredible, it does not provides a complete picture of the Universe, for example it can not account for Gravity (G) and Dark Matter (DM) etc..
- ◆ Now, It is necessary to modify the SM, It is called as *Beyond the SM (BSM)*

Experimental Apparatus

♦ Large Hadron Collider (LHC)

- The LHC is a succession of machines with increasingly higher energies.
- Each machine injects the beam into the next one, which takes over to bring the beam to an even higher energy, and so on.
- In the LHC the last element of this chain each particle beam is accelerated up to the record energy of 6.5 TeV.

◆ Compact Muon Solenoid (CMS)

- The CMS detector is a large technologically advanced detector comprising many layers, each designed to perform a specific task.
- To identify and precisely measure the energies and momenta of all particles

Kinematics: DM Signal Sample

Cross section (σ) vs. M_{X_1}

Background Estimation

The Major Backgrounds, $Z \to \nu\nu$ and Lost Lepton $(W \to l\nu)$, will be estimated from a Combined Maximum Likelihood Fit of the five control regions in data and as well as the signal region. Other Minor Backgrounds are estimated by the corresponding Monte Carlo samples.

Major Backgrounds

 The number of estimated background (BG) events is obtained by,

Estimated
$$BG = R_i \cdot N_i (DATA)_{[CR]}$$

• The Transfer Factor (R_i) is calculated by,

$$R_i = \frac{N_i(MC)_{[SR]}}{N_i(MC)_{[CR]}}$$

The Interaction Lagrangian

$$\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \epsilon^{ijk} X_{\alpha,i} \bar{d}_{\rho,j}^c \mathbf{P}_R d_{\delta,k} + \lambda_2^{\alpha,\rho} X_{\alpha}^* \bar{n}_{\mathrm{DM}\rho} \mathbf{P}_R u + \mathrm{C.C.}$$

- d^c is the charge-conjugate of the Dirac spinor.
- P_R is the right-handed projection operator.
- X_{ς} are iso-single color triplet scalars with hypercharge 3/4.
- n_{DM} is a SM singlet which is dark matter candidate in this model.
- For the indices, ρ , $\delta = 1,2,3$ denote the three quark generations, and i, j = 1,2,3 are the SU(3) color indices.