p_T imbalance # ATLAS VBF + ETmiss vector boson fusion **APS DPF 2021** July 14, 2021 https://indico.cern.ch/event/1034469/contributions/4430545/ #### Intro - Detector signature - Motivation #### Analysis - Signal models - Dominant backgrounds - Event selection - Systematics #### Results - Higgs to "invisible" - Higgs to "dark photon" +γ #### → VBF + E_Tmiss - ATLAS-CONF-2020-008 (April 2020) - https://cds.cern.ch/record/2715447 #### VBF + E_Tmiss +γ - ATLAS-CONF-2021-004 (March 2021) - https://cds.cern.ch/record/2758212 focus #### TM Hong # **Detector signature** #### ATLAS geometry - η along the beam direction - ф azimuthal angle #### VBF jet pair - High p_T - Wide gap in η - Not back-to-back in φ - Large m_{jet-jet} 2 TeV → Low hadronic activity in between #### • E_Tmiss p_T imbalance 840 GeV → #### • For **+**γ High-p_T photon 540 GeV - • $m_T(E_T^{miss}, \gamma)$ 1.1 TeV → http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf #### TM Hong # **Detector signature** #### ATLAS geometry - η along the beam direction - φ azimuthal angle #### VBF jet pair - High p_T - Wide gap in η - Not back-to-back in φ - Large m_{jet-jet} 2 TeV → Low hadronic activity in between #### • E_Tmiss p_T imbalance 840 GeV → #### • For +γ High-p_T photon 540 GeV - • $m_T(E_T^{miss}, \gamma)$ 1.1 TeV → http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf Its η in between jets # Higgs portal to Dark Matter (x) - Without γ: Most sensitive production channel in VBF - With ISR y: Powerful reduction of strong backgrounds - Also scan m_{scalar} for Higgs-like scalar production http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig 01a.pdf # Higgs portal to Dark Photon (γ_d) - Can probe H → γ γ_{dark} - Also scan m_{scalar} for Higgs-like scalar production http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_01b.pdf #### Higgs portal to Dark Matter (x) - Without γ: Most sensitive production channel in VBF - With ISR y: Powerful reduction of strong backgrounds - Also scan m_{scalar} for Higgs-like scalar production http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig 01a.pdf # Higgs portal to Dark Photon (γ_d) - Can probe H → γ γ_{dark} - Also scan m_{scalar} for Higgs-like scalar production http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_01b.pdf # Signal models #### H portal to χ - VBF H₁₂₅ w/ POWHEG NLO - VBF H_{125} + γ_{ISR} w/ MG5_aMC@NLO - S-to-B is higher with m_{jj}, E_T^{miss}, see → #### H portal to γ_d - VBF $H_{125} \rightarrow \gamma \gamma_{dark}$ w/ POWHEG v2 - m_T(E_T^{miss}, y) as proxy for m_H, see → http://cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2016-37/fig_05.pdf # Backgrounds, for +v #### Weak boson bkg'd - Z → vv No leptons - W → ℓv Loses a lepton #### Signal Region - E_Tmiss trigger, > 150 GeV - "Centrality" of γ, 3rd jet - For +γ_{ISR}, 15 < p_T^γ < 110 GeV - For $+\gamma_{dark}$, $max(110,0.7 m_T)$ #### Control Region - For W → ℓv, Require a lepton - Lepton trigger, > 30 GeV - Reverse γ centrality cut # Backgrounds, for +v #### Weak boson bkg'd - Z → vv No leptons - W → ℓv Loses a lepton #### Signal Region - E_Tmiss trigger, > 150 GeV - "Centrality" of γ, 3rd jet - For +γ_{ISR}, 15 < p_T^γ < 110 GeV - For $+\gamma_{dark}$, $max(110,0.7 m_T)$ #### Control Region - For W → ℓv, Require a lepton - Lepton trigger, > 30 GeV - Reverse γ centrality cut #### Uncertainties, for +v #### Statistical - √N - - MC - Theoretical - Wγ, Zγ theory - Experimental - JES, JER | 1σ | Uncertainty on $\mathcal{B}_{ ext{inv}}$ | |-----------|--| |-----------|--| | | on $\mathcal{B}(H \to \gamma \gamma_{\rm d})$ | |--|---| |--|---| | Data stats. | 0.106 | 0.0051 | |---|-------|--------| | $V\gamma$ + jets theory | 0.056 | 0.0028 | | MC stats. | 0.045 | 0.0026 | | Jet Scale and Resolution | 0.045 | 0.0011 | | Photon | 0.032 | 0.0011 | | $e \rightarrow \gamma$, jet $\rightarrow e, \gamma$ Bkg. | 0.026 | 0.0024 | | Pileup | 0.025 | 0.0004 | | $W\gamma$ + jets/ $Z\gamma$ + jets Norm. | 0.021 | 0.0005 | | $E_{ m T}^{ m miss}$ | 0.012 | 0.0003 | | Signal theory | 0.004 | 0.0010 | | Lepton | 0.002 | 0.0008 | | Total | 0.148 | 0.0071 | http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/tab_05.pdf Evaluated by fixing parameters to their bestfit values and quadratically subtracting from the total nominal systematic uncertainty # Result: Higgs to "invisible" +y #### Analysis strategy - Dense Neural Network w/ Keras+Tensorflow - 3 blocks of 384 neurons with ReLU activation - 4 signal region bins in output score #### Result for +y - Observed limit B_{inv} of 0.37 - Expected limit B_{inv} of 0.34 ± 0.13 - Compare with **no** γ 0.37 (36 fb⁻¹) - Updated (below) 0.13 (139 fb⁻¹) #### TM Hong # Result: Higgs to γγ_{dark} #### Dark photon - Analysis strategy: m_T bins (not DNN) - Observed limit B_{dark} of 0.014 - Expected limit B_{dark} of 0.017 ± 0.006 - Scalar mass scan (NWA) http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_12.png #### Previous results CMS limit B_{dark} of 0.029 observed 0.021 expected larger E_Tmiss #### Conclusions - VBF + E_Tmiss (+γ) - Probes Higgs coupling to DM - Probes Higgs coupling to γ_{dark} - Consider other scalar masses #### Results - Limit B_{inv} of 37% (for +γ 139 fb⁻¹) 13% (139 fb⁻¹) - Limit B_{dark} of 1.4% - Scanned m_{scalar} up to 5 TeV http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf # Back-up # Result: Higgs to γγ_{dark} #### Dark photon Scalar mass scan (NWA) http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_07.png # Result: Higgs to γγ_{dark} - Dark photon - m_T bin fit http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_06.pdf # MC samples for +y Table 1: Summary of generators used for simulation. The details and the corresponding references are provided in the body of the text. The V in V+jets represents either a W or a Z boson. | Process | Generator | ME Order | PDF | Parton Shower | Tune | |--|-----------------------------------|--|-----------------|--------------------|----------| | | | Signal Samples | | | | | ggF Higgs | Powheg v2 NNLOPS | NNLO | PDF4LHC15 | Рутніа8.230 | AZNLO | | VBF Higgs+γ | MadGraph5_aMC@NLO 2.6.2 | NLO | PDF4LHC15 | Herwig 7.1.3p1 | A14 | | ggF Higgs $\rightarrow \gamma \gamma_{\rm d}$ | POWHEG V2 NNLOPS | NNLO | PDF4LHC15 | Рутніа8.244р3 | AZNLO | | VBF Higgs $\rightarrow \gamma \gamma_{\rm d}$ | Powheg v2 | NLO | CTEQ6L1 | Рутніа8.244р3 | AZNLO | | |] | Background Samples | | | | | Strong $V\gamma$ + jets | Sherpa v2.2.8 | NLO (up to 1-jets),
LO (up to 3-jets) | NNPDF3.0nnlo | SHERPA
MEPS@NLO | Sherpa | | EW $V\gamma$ + jets | MadGraph5_aMC@NLO 2.6.5 | LO | NNPDF3.11o | Рутніа8.240 | A14 | | EW VV+jets | Sherpa v2.2.1 or
Sherpa v2.2.2 | LO | NNPDF3.0nnlo | SHERPA
MEPS@LO | SHERPA | | VV+jets | Sherpa v2.2.1 or
Sherpa v2.2.2 | NLO (up to 1-jet),
LO (up to 3-jets) | NNPDF3.0nnlo | SHERPA
MEPS@NLO | SHERPA | | EW V+ jets | HERWIG 7.1.3 or HERWIG 7.2.0 | NLO | MMHT2014nlo68cl | Herwig 7.1.3 | Herwig ' | | Strong $W(\rightarrow \mu\nu) + \text{jets/}$ $W(\rightarrow \tau\nu) + \text{jets}$ | Sherpa v2.2.8 | NLO (up to 2-jets),
LO (up to 4-jets) | NNPDF3.0nnlo | SHERPA
MEPS@NLO | Sherpa | | $t\bar{t}\gamma$ | MadGraph5_aMC@NLO 2.2.3 | NLO | NNPDF2.31o | Рутніа8.186 | A14 | | $t\bar{t}$ | PowhegBox v2 | NLO | NNPDF3.0nlo | Рутніа8.230 | A14 | | γ + jet | Sherpa v2.2.2 | NLO (up to 2-jets),
LO (up to 4-jets) | NNPDF3.0nnlo | SHERPA
MEPS@NLO | Sherpa | | | | Systematic Samples | | | | | $V\gamma$ + jets α^4 interference | MadGraph5_aMC@NLO 2.6.2 | LO | NNPDF3.11o | Рутніа8.240 | AZNLO | Table 3: Summary of the requirements defining the different regions considered in this analysis. Where present, the values in squared brackets are referring to the regions defined in the search for $H \to \gamma \gamma_{\rm d}$ signal. The leading and subleading jets must satisfying the fJVT requirements mentioned in Sec. 5. In the SR and $Z_{\text{Rev.Cen.}}^{\gamma}$ CR definitions $E_{\rm T}^{\rm miss,lep-rm} \equiv E_{\rm T}^{\rm miss}$ since no lepton is present. | Variable | SR | $W_{\mu\nu}^{\gamma}$ CR | $W_{e\nu}^{\gamma}$ CR | $Z_{\text{Rev,Cen.}}^{\gamma}$ CR | Fake– e CR | |--|---|--------------------------|------------------------|-----------------------------------|--------------| | \rightarrow $p_{\rm T}(j_1)$ [GeV] | > 60 | | | | | | \rightarrow $p_{\mathrm{T}}(j_2)$ [GeV] | > 50 | | | | | | $N_{ m jet}$ | 2,3 | | | | | | $N_{\text{b-jet}}$ | < 2 | | | | | | $\rightarrow \Delta \phi_{jj}$ | < 2.5 [2.0] | | | | | | $\rightarrow \Delta \eta_{\rm jj} $ | > 3.0 | | | | | | $\eta(j_1) \times \eta(j_2)$ | < 0 | | | | | | C_3 | < 0.7 | | | | | | $\longrightarrow m_{jj}$ [TeV] | > 0.25 | | | | | | $E_{\rm T}^{\rm miss}$ [GeV] | > 150 | _ | > 80 | > 150 | < 80 | | \rightarrow $E_{\mathrm{T}}^{\mathrm{miss,lep-rm}}$ [GeV] | _ | > 150 | > 150 | _ | > 150 | | $E_{\mathrm{T}}^{\mathrm{jets,no-jvt}}$ [GeV] | > 130 | | | | | | $\Delta \phi(j_i, E_{\mathrm{T}}^{\mathrm{miss, lep-rm}})$ | > 1.0 | | | | | | N_{γ} | 1 | | | | | | $p_{\mathrm{T}}\left(\gamma\right)\left[\mathrm{GeV}\right]$ | $> 15, < 110 [> 15, < max(110,0.733 \times m_T)]$ | | | | | | C_{γ} | > 0.4 | > 0.4 | > 0.4 | < 0.4 | > 0.4 | | $\Delta \phi(\gamma, E_{ m T}^{ m miss, lep-rm})$ | > 1.8 [-] | | | | | | N_ℓ | 0 | 1μ | 1 <i>e</i> | 0 | 1 <i>e</i> | | $p_{\mathrm{T}}\left(\ell\right)$ [GeV] | > 30 | | | | | 8 variables fed to DNN \uparrow η_{γ}, η_{j2} http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/tab_03.pdf centrality C_{γ} [102] is defined as $$C_{\gamma} = \exp\left(-\frac{4}{(\eta_1 - \eta_2)^2}(\eta_{\gamma} - \frac{\eta_1 + \eta_2}{2})^2\right),\tag{1}$$