p_T imbalance

ATLAS VBF + ETmiss

vector boson fusion

APS DPF 2021 July 14, 2021

https://indico.cern.ch/event/1034469/contributions/4430545/

Intro

- Detector signature
- Motivation

Analysis

- Signal models
- Dominant backgrounds
- Event selection
- Systematics

Results

- Higgs to "invisible"
- Higgs to "dark photon" +γ

→ VBF + E_Tmiss

- ATLAS-CONF-2020-008 (April 2020)
- https://cds.cern.ch/record/2715447

VBF + E_Tmiss +γ

- ATLAS-CONF-2021-004 (March 2021)
- https://cds.cern.ch/record/2758212

focus

TM Hong

Detector signature

ATLAS geometry

- η along the beam direction
- ф azimuthal angle

VBF jet pair

- High p_T
- Wide gap in η
- Not back-to-back in φ
- Large m_{jet-jet}

2 TeV →

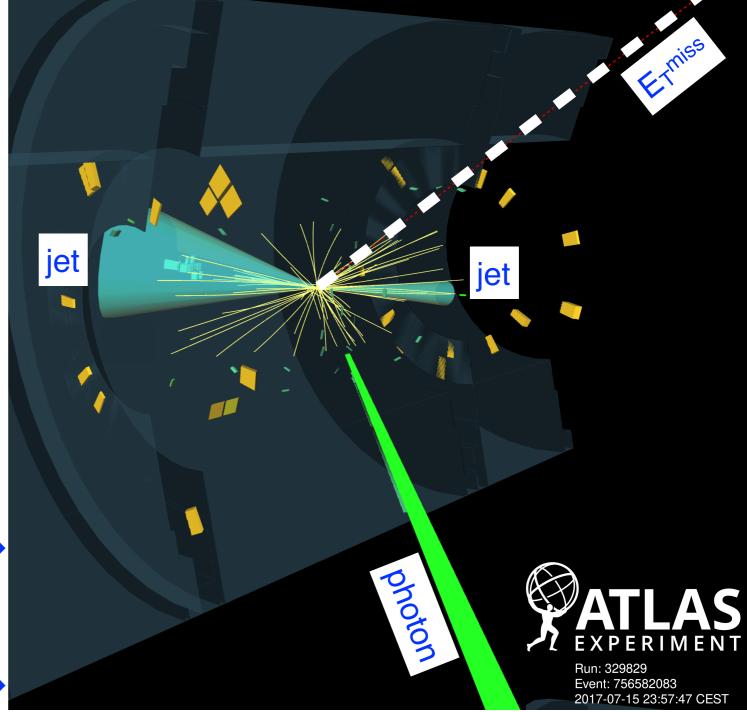
Low hadronic activity in between

• E_Tmiss

p_T imbalance

840 GeV →

• For **+**γ


High-p_T photon

540 GeV -

• $m_T(E_T^{miss}, \gamma)$

1.1 TeV →

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf

TM Hong

Detector signature

ATLAS geometry

- η along the beam direction
- φ azimuthal angle

VBF jet pair

- High p_T
- Wide gap in η
- Not back-to-back in φ
- Large m_{jet-jet}

2 TeV →

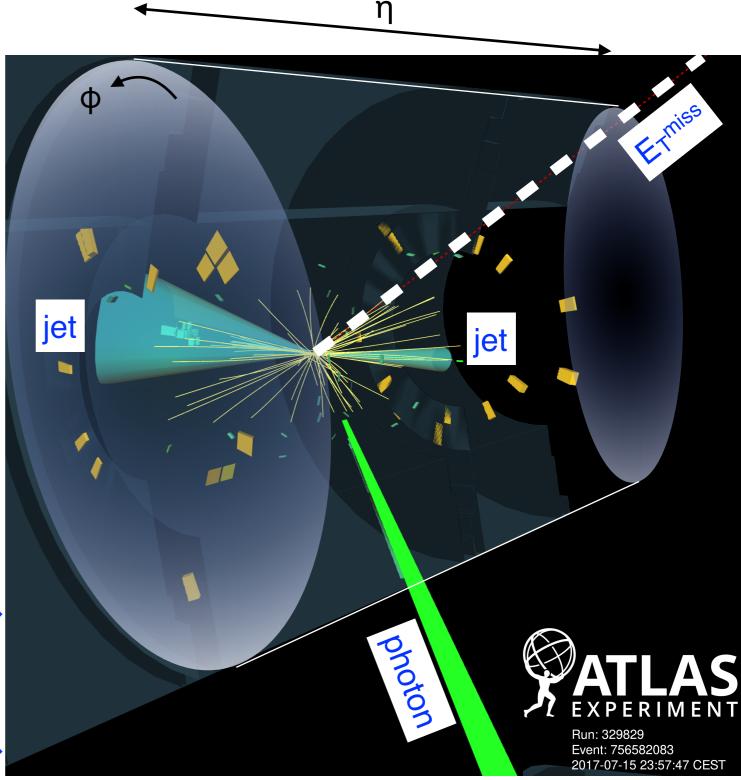
Low hadronic activity in between

• E_Tmiss

p_T imbalance

840 GeV →

• For +γ

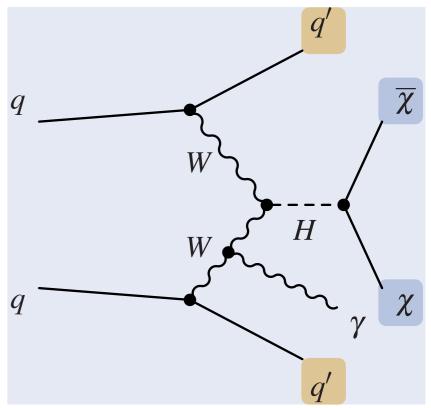

High-p_T photon

540 GeV -

• $m_T(E_T^{miss}, \gamma)$

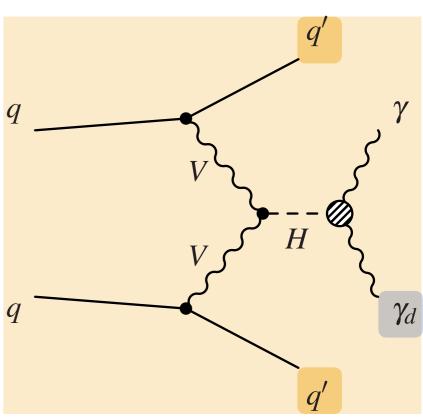
1.1 TeV →

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf



Its η in between jets

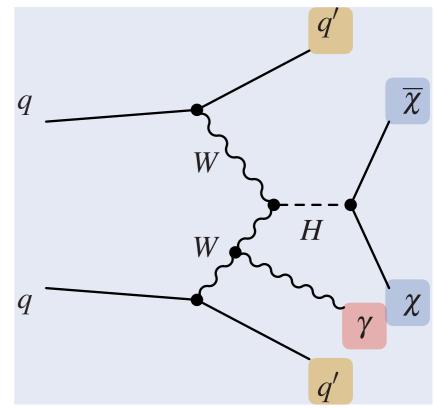
Higgs portal to Dark Matter (x)


- Without γ: Most sensitive production channel in VBF
- With ISR y: Powerful reduction of strong backgrounds
- Also scan m_{scalar} for Higgs-like scalar production

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig 01a.pdf

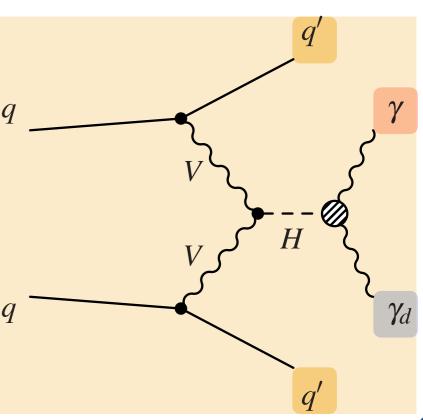
Higgs portal to Dark Photon (γ_d)

- Can probe H → γ γ_{dark}
- Also scan m_{scalar} for Higgs-like scalar production



http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_01b.pdf

Higgs portal to Dark Matter (x)


- Without γ: Most sensitive production channel in VBF
- With ISR y: Powerful reduction of strong backgrounds
- Also scan m_{scalar} for Higgs-like scalar production

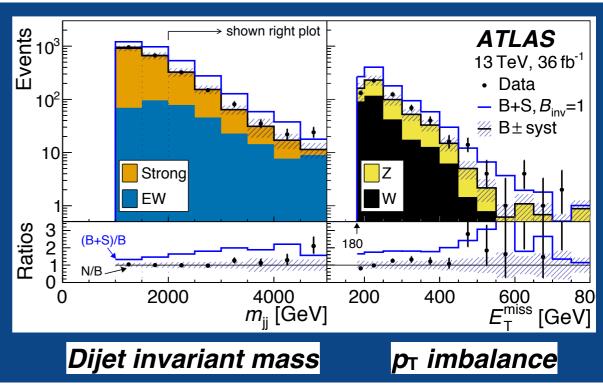
http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig 01a.pdf

Higgs portal to Dark Photon (γ_d)

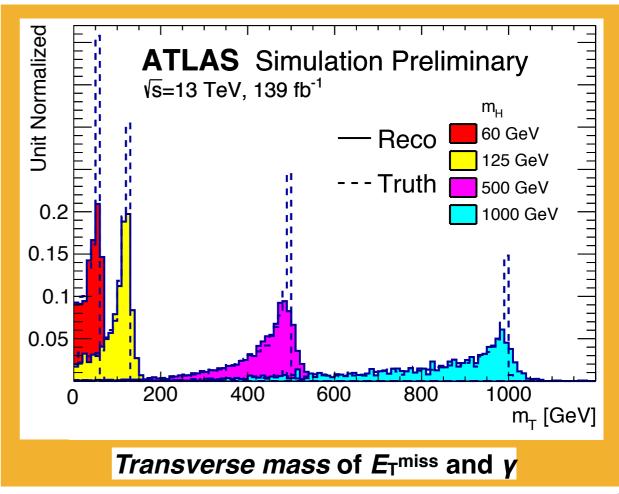
- Can probe H → γ γ_{dark}
- Also scan m_{scalar} for Higgs-like scalar production

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_01b.pdf

Signal models



H portal to χ


- VBF H₁₂₅
 w/ POWHEG NLO
- VBF H_{125} + γ_{ISR} w/ MG5_aMC@NLO
- S-to-B is higher with m_{jj}, E_T^{miss}, see →

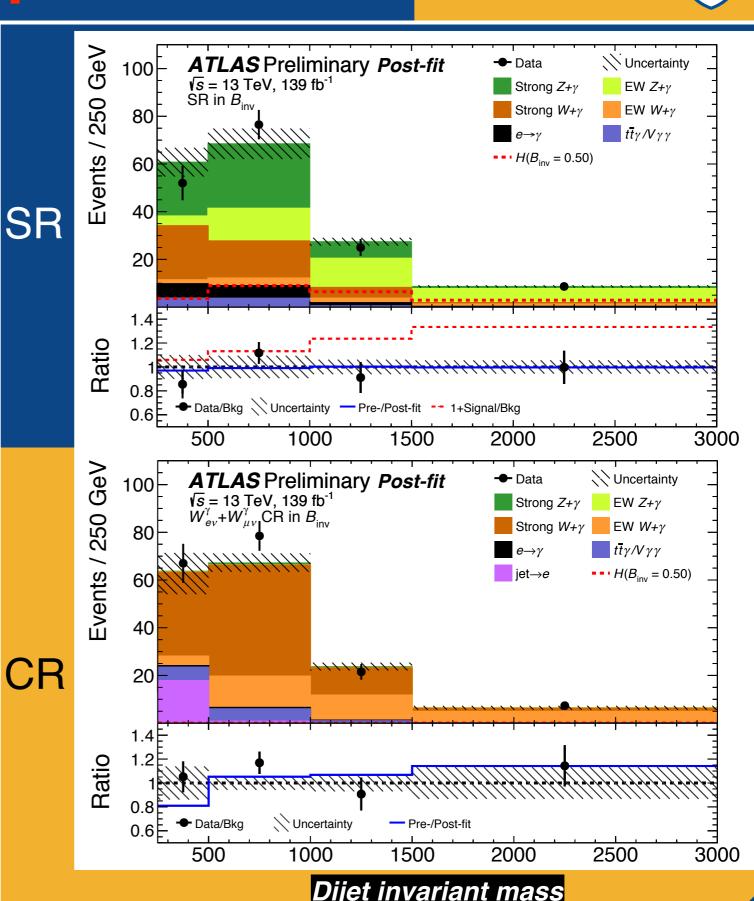
H portal to γ_d

- VBF $H_{125} \rightarrow \gamma \gamma_{dark}$ w/ POWHEG v2
- m_T(E_T^{miss}, y) as proxy for m_H, see →

http://cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2016-37/fig_05.pdf

Backgrounds, for +v

Weak boson bkg'd


- Z → vv No leptons
- W → ℓv Loses a lepton

Signal Region

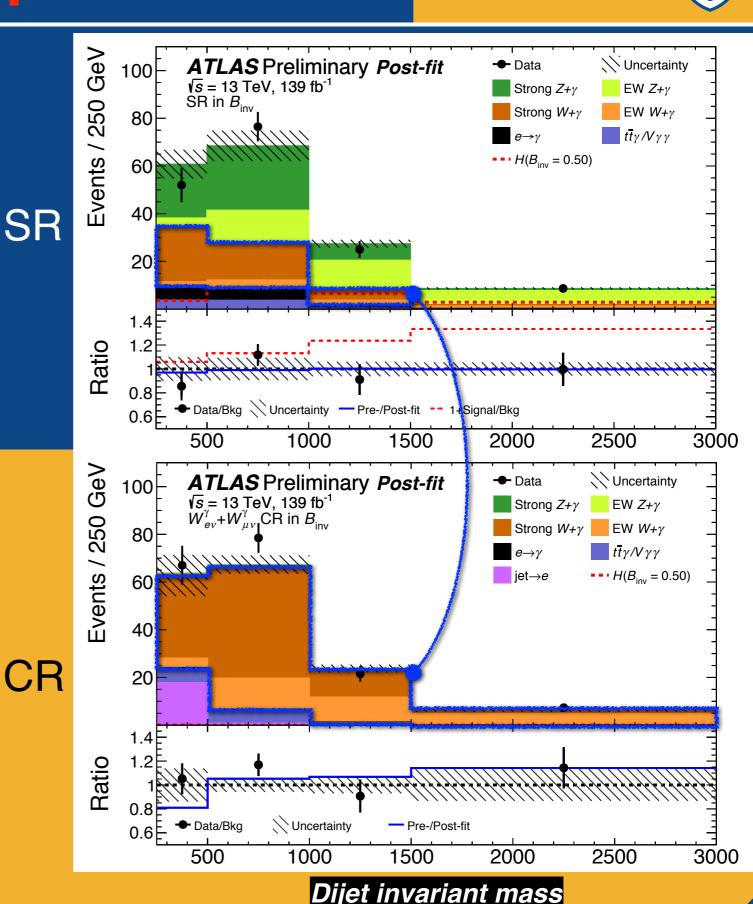
- E_Tmiss trigger, > 150 GeV
- "Centrality" of γ, 3rd jet
- For +γ_{ISR}, 15 < p_T^γ < 110 GeV
- For $+\gamma_{dark}$, $max(110,0.7 m_T)$

Control Region

- For W → ℓv, Require a lepton
- Lepton trigger, > 30 GeV
- Reverse γ centrality cut

Backgrounds, for +v

Weak boson bkg'd


- Z → vv No leptons
- W → ℓv Loses a lepton

Signal Region

- E_Tmiss trigger, > 150 GeV
- "Centrality" of γ, 3rd jet
- For +γ_{ISR}, 15 < p_T^γ < 110 GeV
- For $+\gamma_{dark}$, $max(110,0.7 m_T)$

Control Region

- For W → ℓv, Require a lepton
- Lepton trigger, > 30 GeV
- Reverse γ centrality cut

Uncertainties, for +v

Statistical

- √N -
- MC

- Theoretical
 - Wγ, Zγ theory

- Experimental
 - JES, JER

1σ	Uncertainty on $\mathcal{B}_{ ext{inv}}$
-----------	--

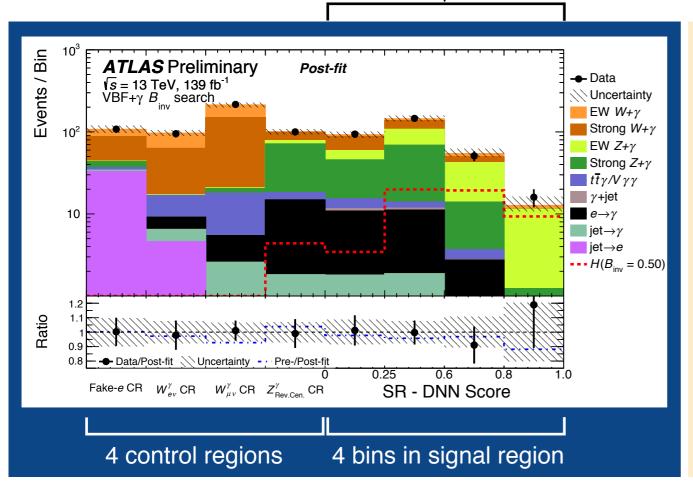
	on $\mathcal{B}(H \to \gamma \gamma_{\rm d})$
--	---

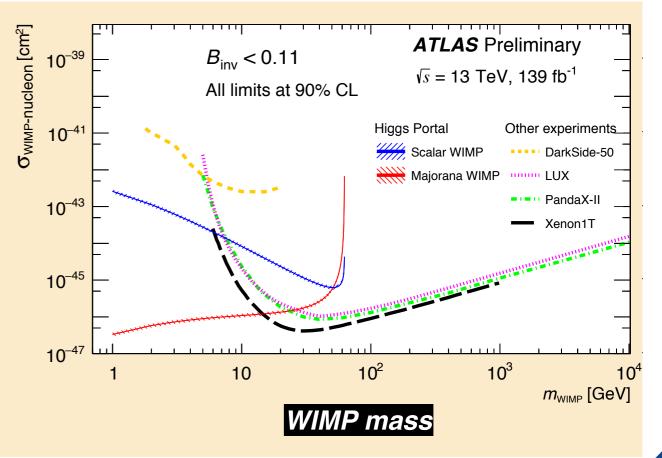
Data stats.	0.106	0.0051
$V\gamma$ + jets theory	0.056	0.0028
MC stats.	0.045	0.0026
Jet Scale and Resolution	0.045	0.0011
Photon	0.032	0.0011
$e \rightarrow \gamma$, jet $\rightarrow e, \gamma$ Bkg.	0.026	0.0024
Pileup	0.025	0.0004
$W\gamma$ + jets/ $Z\gamma$ + jets Norm.	0.021	0.0005
$E_{ m T}^{ m miss}$	0.012	0.0003
Signal theory	0.004	0.0010
Lepton	0.002	0.0008
Total	0.148	0.0071

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/tab_05.pdf

Evaluated by fixing parameters to their bestfit values and quadratically subtracting from the total nominal systematic uncertainty

Result: Higgs to "invisible" +y

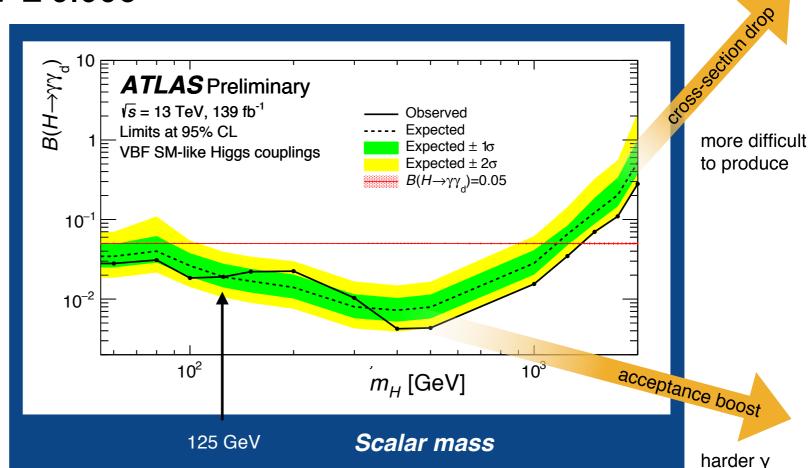



Analysis strategy

- Dense Neural Network w/ Keras+Tensorflow
- 3 blocks of 384 neurons with ReLU activation
- 4 signal region bins in output score

Result for +y

- Observed limit B_{inv} of 0.37
- Expected limit B_{inv} of 0.34 ± 0.13
- Compare with **no** γ 0.37 (36 fb⁻¹)
- Updated (below) 0.13 (139 fb⁻¹)


TM Hong

Result: Higgs to γγ_{dark}

Dark photon

- Analysis strategy: m_T bins (not DNN)
- Observed limit B_{dark} of 0.014
- Expected limit B_{dark} of 0.017 ± 0.006
- Scalar mass scan (NWA)

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_12.png

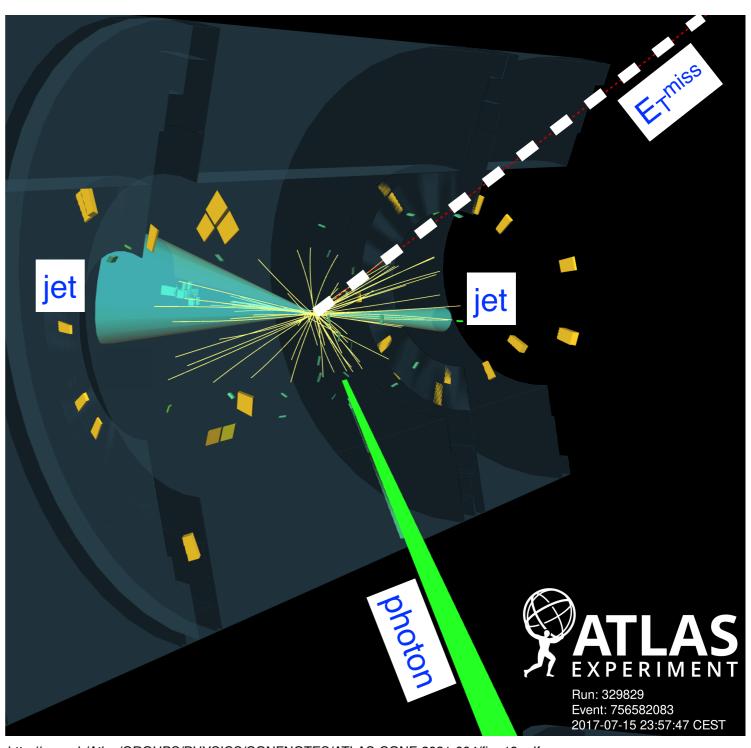
Previous results

CMS limit B_{dark} of

0.029 observed

0.021 expected

larger E_Tmiss

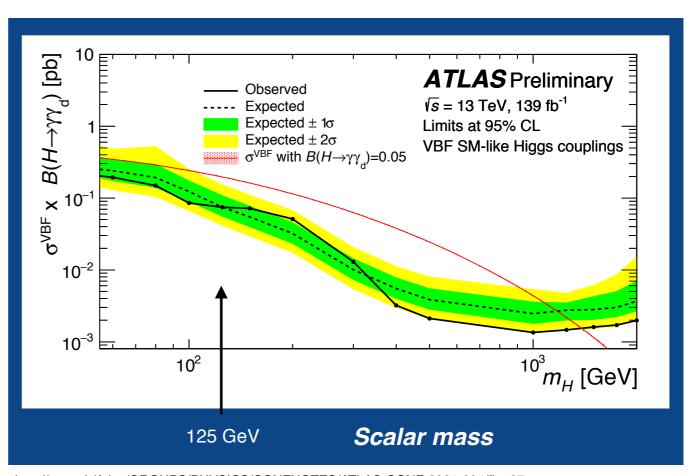

Conclusions

- VBF + E_Tmiss (+γ)
 - Probes Higgs coupling to DM
 - Probes Higgs coupling to γ_{dark}
 - Consider other scalar masses

Results

- Limit B_{inv} of 37% (for +γ 139 fb⁻¹)
 13% (139 fb⁻¹)
- Limit B_{dark} of 1.4%
- Scanned m_{scalar} up to 5 TeV

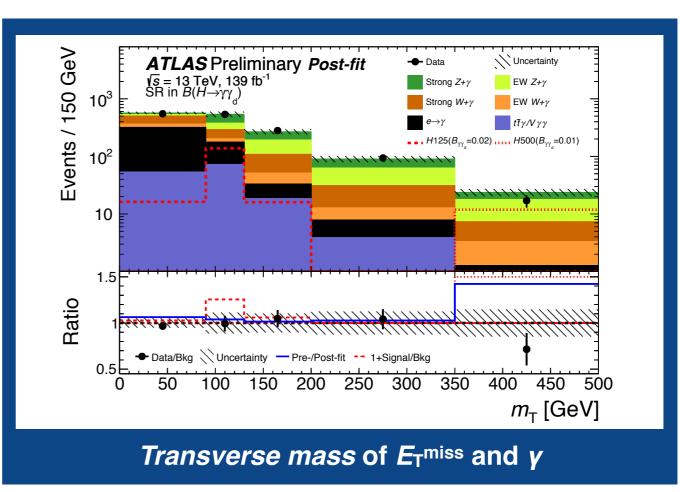
http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_19.pdf


Back-up

Result: Higgs to γγ_{dark}

Dark photon

Scalar mass scan (NWA)



http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_07.png

Result: Higgs to γγ_{dark}

- Dark photon
 - m_T bin fit

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/fig_06.pdf

MC samples for +y

Table 1: Summary of generators used for simulation. The details and the corresponding references are provided in the body of the text. The V in V+jets represents either a W or a Z boson.

Process	Generator	ME Order	PDF	Parton Shower	Tune
		Signal Samples			
ggF Higgs	Powheg v2 NNLOPS	NNLO	PDF4LHC15	Рутніа8.230	AZNLO
VBF Higgs+γ	MadGraph5_aMC@NLO 2.6.2	NLO	PDF4LHC15	Herwig 7.1.3p1	A14
ggF Higgs $\rightarrow \gamma \gamma_{\rm d}$	POWHEG V2 NNLOPS	NNLO	PDF4LHC15	Рутніа8.244р3	AZNLO
VBF Higgs $\rightarrow \gamma \gamma_{\rm d}$	Powheg v2	NLO	CTEQ6L1	Рутніа8.244р3	AZNLO
]	Background Samples			
Strong $V\gamma$ + jets	Sherpa v2.2.8	NLO (up to 1-jets), LO (up to 3-jets)	NNPDF3.0nnlo	SHERPA MEPS@NLO	Sherpa
EW $V\gamma$ + jets	MadGraph5_aMC@NLO 2.6.5	LO	NNPDF3.11o	Рутніа8.240	A14
EW VV+jets	Sherpa v2.2.1 or Sherpa v2.2.2	LO	NNPDF3.0nnlo	SHERPA MEPS@LO	SHERPA
VV+jets	Sherpa v2.2.1 or Sherpa v2.2.2	NLO (up to 1-jet), LO (up to 3-jets)	NNPDF3.0nnlo	SHERPA MEPS@NLO	SHERPA
EW V+ jets	HERWIG 7.1.3 or HERWIG 7.2.0	NLO	MMHT2014nlo68cl	Herwig 7.1.3	Herwig '
Strong $W(\rightarrow \mu\nu) + \text{jets/}$ $W(\rightarrow \tau\nu) + \text{jets}$	Sherpa v2.2.8	NLO (up to 2-jets), LO (up to 4-jets)	NNPDF3.0nnlo	SHERPA MEPS@NLO	Sherpa
$t\bar{t}\gamma$	MadGraph5_aMC@NLO 2.2.3	NLO	NNPDF2.31o	Рутніа8.186	A14
$t\bar{t}$	PowhegBox v2	NLO	NNPDF3.0nlo	Рутніа8.230	A14
γ + jet	Sherpa v2.2.2	NLO (up to 2-jets), LO (up to 4-jets)	NNPDF3.0nnlo	SHERPA MEPS@NLO	Sherpa
		Systematic Samples			
$V\gamma$ + jets α^4 interference	MadGraph5_aMC@NLO 2.6.2	LO	NNPDF3.11o	Рутніа8.240	AZNLO

Table 3: Summary of the requirements defining the different regions considered in this analysis. Where present, the values in squared brackets are referring to the regions defined in the search for $H \to \gamma \gamma_{\rm d}$ signal. The leading and subleading jets must satisfying the fJVT requirements mentioned in Sec. 5. In the SR and $Z_{\text{Rev.Cen.}}^{\gamma}$ CR definitions $E_{\rm T}^{\rm miss,lep-rm} \equiv E_{\rm T}^{\rm miss}$ since no lepton is present.

Variable	SR	$W_{\mu\nu}^{\gamma}$ CR	$W_{e\nu}^{\gamma}$ CR	$Z_{\text{Rev,Cen.}}^{\gamma}$ CR	Fake– e CR
\rightarrow $p_{\rm T}(j_1)$ [GeV]	> 60				
\rightarrow $p_{\mathrm{T}}(j_2)$ [GeV]	> 50				
$N_{ m jet}$	2,3				
$N_{\text{b-jet}}$	< 2				
$\rightarrow \Delta \phi_{jj}$	< 2.5 [2.0]				
$\rightarrow \Delta \eta_{\rm jj} $	> 3.0				
$\eta(j_1) \times \eta(j_2)$	< 0				
C_3	< 0.7				
$\longrightarrow m_{jj}$ [TeV]	> 0.25				
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	_	> 80	> 150	< 80
\rightarrow $E_{\mathrm{T}}^{\mathrm{miss,lep-rm}}$ [GeV]	_	> 150	> 150	_	> 150
$E_{\mathrm{T}}^{\mathrm{jets,no-jvt}}$ [GeV]	> 130				
$\Delta \phi(j_i, E_{\mathrm{T}}^{\mathrm{miss, lep-rm}})$	> 1.0				
N_{γ}	1				
$p_{\mathrm{T}}\left(\gamma\right)\left[\mathrm{GeV}\right]$	$> 15, < 110 [> 15, < max(110,0.733 \times m_T)]$				
C_{γ}	> 0.4	> 0.4	> 0.4	< 0.4	> 0.4
$\Delta \phi(\gamma, E_{ m T}^{ m miss, lep-rm})$	> 1.8 [-]				
N_ℓ	0	1μ	1 <i>e</i>	0	1 <i>e</i>
$p_{\mathrm{T}}\left(\ell\right)$ [GeV]	> 30				

8 variables fed to DNN

 \uparrow η_{γ}, η_{j2}

http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-004/tab_03.pdf

centrality C_{γ} [102] is defined as

$$C_{\gamma} = \exp\left(-\frac{4}{(\eta_1 - \eta_2)^2}(\eta_{\gamma} - \frac{\eta_1 + \eta_2}{2})^2\right),\tag{1}$$