Freezing in with Lepton Flavored Fermions

Shiuli Chatterjee CHEP, Indian Institute of Science

based on arXiv:hep-ph/2103.03886, in collaboration with G. D'Ambrosio, R. Laha, S. K. Vempati

मारतीय विज्ञान संस्थान

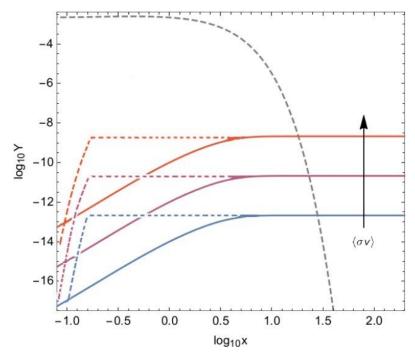
2021 Meeting of the Division of Particles and Fields of the American Physical Society (DPF21) July 12th, 2021

Outline

- Freeze-in and Lepton Flavored Dark Matter
- Minimal Flavor Violation
- Stability analysis
- Model
- Results

Freeze-in & Lepton Flavored Dark Matter

- Freeze-in mechanism
 - ▶ Non-thermalized: small couplings
 - \triangleright $SM(SM) \rightarrow DM, DM$



Small couplings make detection difficult

Electron Yukawa

is a small parameter in the SM

Lepton Flavored Dark Matter

Minimal model with fermionic dark matter under

Minimal Flavor Violation

leads to photon mediated direct detection process

Minimal Flavor Violation

Consider the lepton sector of the Standard Model

$$\mathcal{L}_{SM} \supset i \overline{L} \not\!\!D L + i \overline{e}_R \not\!\!D e_R + \overline{L} Y_l e_R H$$

$$L \sim \begin{pmatrix} l_e \\ l_\mu \\ l_\tau \end{pmatrix}, \qquad e_R \sim \begin{pmatrix} e_R \\ \mu_R \\ \tau_R \end{pmatrix}$$

All but the Yukawa term are symmetric under a large Global symmetry

$$G_{LF} \sim SU(3)_L \otimes SU(3)_{e_R}$$

 $L \sim (3,1), e_R \sim (1,3)$

MFV hypothesis demands that the SM Yukawa matrices be the only sources of flavor breaking. Treats Yukawas as spurions transforming non-trivially under flavor:

$$\overline{L}Y_le_RH \Rightarrow Y_l\sim(3,\overline{3})$$

Models are constructed by adding flavored particles and constructing operators invariant under G_{LF}

Minimal Flavor Violation: Stability Analysis

Denote the irreducible representation of a SM singlet DM χ under G_{LF}

$$\chi \sim (n_L, m_L)_L \times (n_e, m_e)_{e_R}$$

And write the most general decay operator

$$\mathcal{O}_{decay} = \chi_{L,R} \underbrace{L \dots \overline{L}}_{A} \underbrace{\overline{L} \dots e_{R} \dots \overline{e_{R}}}_{C} \dots \underbrace{\overline{e_{R} \dots Y_{l} \dots Y_{l}}}_{E} \dots \underbrace{Y_{l} \dots Y_{l} \dots O_{weak}}_{F}$$

Condition for \mathcal{O}_{decay} to be allowed:

$$SU(3)_L: (A - B + E - F + n_L - m_L) \bmod 3 = 0$$

$$SU(3)_R: (C - D - E + F + n_E - m_E) \bmod 3 = 0$$

$$\Rightarrow (A - B + C - D + n_L - m_L + n_E - m_E) \bmod 3 = 0$$

Assume χ has lepton number q_{LN} and demand for lepton number conservation

$$(A - B + C - D + q_{LN}) = 0$$

$$(n_L - m_L + n_E - m_E - q_{LN}) \bmod 3 \neq 0$$

Lepton flavored DM under MFV

$$(n_L - m_L + n_E - m_E - q_{LN}) \mod 3 \neq 0$$

MFV + Lepton number conservation renders specific DM representations automatically stable *up to all orders*

χ_L	χ_R	q_{LN}	MFV	LNC	Stable	Operators
(3,1) (1,3)	-1	✓	✓	✓	$(\bar{\chi}_L \sigma_{\mu\nu} Y_l \chi_R) B^{\mu\nu}$, $(\bar{\chi}_L \sigma_{\mu\nu} Y_l \gamma_5 \chi_R) B^{\mu\nu}$, $(\bar{\chi}_L \sigma^{\mu\nu} Y_l \chi_R) H^{\dagger} H$
(3,1) (3,1)	-1	✓	✓	✓	$(\bar{\chi}_L \sigma_{\mu\nu} \chi_R) B^{\mu\nu}$, $(\bar{\chi}_L \sigma_{\mu\nu} \gamma_5 \chi_R) B^{\mu\nu}$, $(\bar{\chi}_L \sigma^{\mu\nu} \chi_R) H^{\dagger} H$

Introduce a chiral, fermionic DM transforming nontrivially under flavor group:

$$\chi_L \sim (3,1)_{G_{LF}} \sim (\chi_1,\chi_2,\chi_3)_L$$
, $\chi_R \sim (1,3)_{G_{LF}} \sim (\chi_1,\chi_2,\chi_3)_R$, where $G_{LF} \sim SU(3)_L \otimes SU(3)_{e_R}$

$$\mathcal{L}_{int} \supset \underbrace{\frac{1}{2\Lambda_{MFV}}(\bar{\chi}_L\sigma_{\mu\nu}Y_l\chi_R)B^{\mu\nu}}_{\text{Magnetic dipole moment }(MDM)} + \underbrace{\frac{i}{2\Lambda_{MFV}}(\bar{\chi}_L\sigma_{\mu\nu}\gamma_5Y_l\chi_R)B^{\mu\nu}}_{\text{Electric dipole moment }(EDM)} + \underbrace{\frac{1}{2\Lambda_{MFV}}(\bar{\chi}_L\sigma^{\mu\nu}Y_l\chi_R)H^{\dagger}H}_{\text{H-mediated}}$$

and the masses of the DM partners get related by:

$$m_{\chi}(\bar{\chi}_L Y_l \chi_R) \Rightarrow m_{\chi_1} : m_{\chi_2} : m_{\chi_3} = m_e : m_{\mu} : m_{\tau}$$

Flavored DM Freeze-in and Detection

$$\chi_L \sim (3,1)_{G_{LF}} \sim (\chi_1, \chi_2, \chi_3)_L$$
, $\chi_R \sim (1,3)_{G_{LF}} \sim (\chi_1, \chi_2, \chi_3)_R$, where $G_{LF} \sim SU(3)_L \otimes SU(3)_{e_R}$

$$\mathcal{L}_{int} \supset \underbrace{\frac{1}{2\Lambda_{MFV}} (\bar{\chi}_L \sigma_{\mu\nu} Y_l \chi_R) B^{\mu\nu}}_{\text{Magnetic dipole moment } (MDM)} + \underbrace{\frac{i}{2\Lambda_{MFV}} (\bar{\chi}_L \sigma_{\mu\nu} \gamma_5 Y_l \chi_R) B^{\mu\nu}}_{\text{Electric dipole moment } (EDM)} + \underbrace{\frac{1}{2\Lambda_{MFV}} (\bar{\chi}_L Y_l \chi_R) H^{\dagger} H}_{\text{H-mediated}}$$

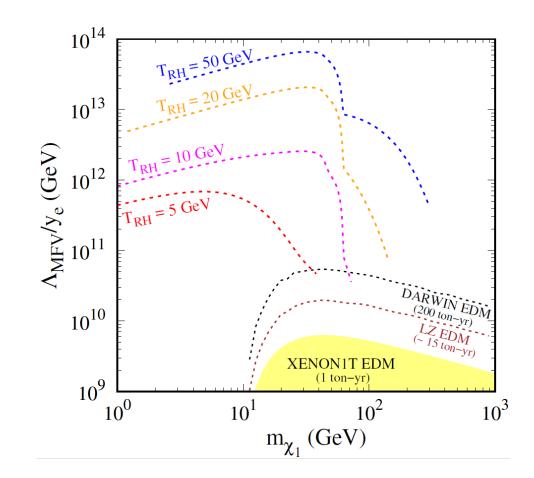
and the masses of the DM partners get related by:

$$m_{\chi}(\bar{\chi}_L Y_l \chi_R) \Longrightarrow m_{\chi_1} : m_{\chi_2} : m_{\chi_3} = m_e : m_{\mu} : m_{\tau}$$

- ► Higgs mediated term ⇒ IR freeze-in
- Dipole moment like terms ⇒ UV freeze-in (sensitive to reheating temperature)
- Electric dipole moment like operator lead to direct detection signals enhanced by $1/v^2E_R$ giving the strongest constraints

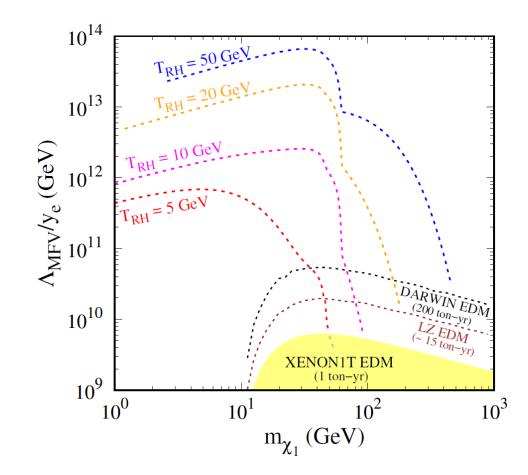
Results: $G_{LF} \sim SU(3)_L \otimes SU(3)_{e_R}$ $\chi_L \sim (3,1), \chi_R \sim (1,3)$

- Conditions:
 - \wedge $\Lambda_{MFV} > T_{RH}$
 - $m_{\chi_1}, m_{\chi_2}, m_{\chi_3} < \Lambda_{MFV}$
 - The lightest DM partner χ_1 also has the smallest coupling, form the complete relic abundance $(m_{\chi_2} \gg T_{RH})$
- Future direct detection experiments will probe parts of the parameter space



Results: $G_{LF} \sim SU(2)_L \otimes SU(2)_{e_R}$ $\chi_L \sim (2,1), \chi_R \sim (1,2)$

- Conditions:
 - \wedge $\Lambda_{MFV} > T_{RH}$
 - $m_{\chi_1}, m_{\chi_2} < \Lambda_{MFV}$
 - The lightest DM partner χ_1 also has the smallest coupling, and forms the complete relic abundance $(m_{\chi_2} \gg T_{RH})$
- XENON1T already rules out parts of the parameter space with future experiments probing it more extensively.



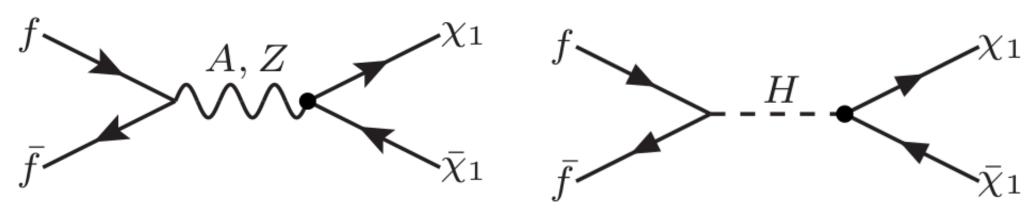
Summary

- We consider a lepton flavored dark matter particles in the paradigm of Minimal Flavor Violation to motivate a small coupling for freeze-in production of dark matter
- Lepton number conservation in conjunction with MFV leads to stability at cosmological scales
- We show with the example of a model that such a stable particle can reproduce the observed relic density through freeze-in
- And we get viable freeze-in models that can be probed in present/ future direct detection experiments

Thank you!

Back-up

For relic density:



For direct detection:

