HeRALD: Dark Matter Direct Detection with Superfluid ⁴He

Pratyush Patel (University of Massachusetts, Amherst) For the SPICE/HeRALD Collaboration

SPICE/HeRALD Collaboration

Spin Independent DM-Nucleon search

- World leading DM-Nucleon(Spin Independent) limits using different experimental techniques.
- Reach to sub-GeV scale is achieved via second order process like Migdal effect and Bremsstrahlung.
- Probe lower cross-section with upcoming new target materials and technology.

- Chemically pure and liquid at mK temperature
- Multiple excitation signal, enabling NR-ER discrimination
- Free of lattice defect
- < 20eV no ER backgrounds, quasiparticle only regime

Singlet Dimer

- Atomic excitations
- Decays promptly ~ 10ns

Triplet Dimer

- Atomic excitations
- Long lived dimer ~ 13s, ballistic
 propagation ~ 10 m/s

Quasiparticle Excitation

- Collective excitations
- Phonons and rotons
 - Different flavors, different velocity, different boundary crossing/reflecting probabilities

⁴He Detection channel: Atomic excitations

Singlet Dimer

- Decays via Photon emission (16eV)
- Detected via both suspended and immersed calorimeters (ns time scale)

Triplet Dimer

- Decays via quenching at the detector-⁴He interface (16eV)
- Detected via immersed calorimeters (ms time scale)

4He Detection channel: Collective excitations PhysRevD.100.092007

- Detected via Quantum Evaporation of ⁴He atom at the vacuum-⁴He interface.
- ⁴He atom sticking on to detector surface amplifies the signal via adhesion gain.

Scintillation from ER and NR in superfluid ⁴He: Setup

Data Taking:

- <u>ER Data</u>: 662 keV ¹³⁷Cs Source.
 <u>NR Data</u>: 2.8 MeV Neutron, DD fusion neutron generator.
- ⁴He Temperature: 1.75K
- Quartz panel in front of the PMTs coated with TPB.
- ~30 µs of data taking window, scintillation from triplet will be a constant background signal.

Performed timing study of these

lacksquare

Scintillation from ER and NR in superfluid 4He: Timing Studies

- **Prompt**: decaying
 - Singlets Dimer
 - Formed: Atomic Excitation
 - + Bimolecular quenching
 - of Singlets Dimer

Scintillation from ER and NR in superfluid ⁴He: Timing Studies

Ongoing Activities at UMass and UC Berkley

Road map for superfluid ⁴He, quasiparticle excitations regime

3. Enhance the reflectivity of QPs, control surface roughness on atomic scales

Thank you

Large Area Photon Detector: Just Shrink a SuperCDMS detector

- 3" diameter Si wafer (45.6 cm²)
- Distributed athermal phonon sensors minimize phonon collection time (as
 - Athermal Phonon collection time

Baseline Resolution

 $\sigma_{\rm E}$ =3.5 ± 0.25 eV (stat)^{+0.0}_{-0.7} (sys)

Energy [eV]

Baseline Resolution

800

600

200

Count 400 Baseline Resolution: $\sigma = 3.497$ [e

10

noise data

Quasiparticles Transmission and Reflection Probabilities:

FIG. 4. Quasiparticle transmission and reflection probabilities (per interface interaction) showing dependence on incoming quaiparticle momentum (x axis) and incidence angle (y axis). We combine the quasiparticle reflection description of Tanatarov *et al.* [84] with the evaporation description of Sobnack *et al.* [85]. The transmission probability across the ⁴He-solid interface (upper left panel) has been multiplied by a factor of 20 here for visibility. The Sobnack *et al.* quantum evaporation probability (upper right panel) has been reduced by a factor of 2 (here and in the Monte Carlo simulation) to better match experiment. Solid white lines indicate the boundaries between phonon, \mathbb{R}^- , and \mathbb{R}^+ regions. Dashed white lines indicate the boundaries of the momentum range for which the dispersion relation is multivalued in energy.

Quantum Evaporation: Slide From Scott Hertel

- Low transmission probability of QP to other solid, Immersed Calorimeter is inefficient
- Downconversion of the QP to thermal phonons is prevented, enabling Quantum Evaporation.
- Interconversion of QP aids the process of detection via Quantum Evaporation.

Scintillation from ER and NR in superfluid 4He

Prompt Scintillation < 460ns

- Singlet Quenching ~ decreases prompt scintillation
- Quenching ~track density,NR higher track density
- Decrease in prompt scintillation is more in NR

Delayed scintillation ~ 1/t

Bimolecular Quenching of Triplets

Delayed scintillation ~ exp(-t)

exponential decay
Atomic Singlet+4He-> Singlet?

- Triplet Quenching ~ increases delayed 1/t scintillation
- Decrease in delayed 1/t scintillation is more in NR

