Radiation Tolerance of Diamond Detectors

Meeting of the Division of Particles and Fields of the American Physical Society

Lukas Bäni on behalf of the RD42 Collaboration

14 July 2021

DPF 2021

» Motivation

- * Estimated particle fluence for the innermost layers
 - * $\mathcal{O}(\sim 10^{15}/\text{cm}^2)$ at the LHC
 - * $\mathcal{O}(\sim 10^{16}/\text{cm}^2)$ at the HL-LHC
 - $* \mathcal{O}(\sim 10^{17}/\text{cm}^2)$ at the FCC
 - * Above 10¹⁶/cm² all materials are trap limited
 - \rightarrow need for more radiation tolerant detector designs/materials
- * Diamond as a detector material
 - * intrinsic radiation tolerance due to large displacement energy
 - * insulating material with high thermal conductivity
 - high charge carrier mobility
- * RD42 collaboration investigates signals and radiation tolerance in various detector designs
 - pad (full diamond as a single cell)
 - strip (diamond segmented with multi-channel readout)
 - pixel (diamond sensor on pixel chips)
 - $\ast~$ 3D to reduce drift distance in trap limited materials \rightarrow A. Porter's talk
 - \rightarrow complete characterisation of diamond radiation tolerance

» The RD42 Collaboration

The 2021 RD42 Collaboration

M. Artuso²⁰, F. Bachmair²⁴, L. Bäni²⁴, M. Bartosik³, H. Beck²³ V. Bellini², V. Belvaev¹², B. Bentele¹⁹, P. Bergonzo³¹, A. Bes²⁷ J-M. Brom⁷, G. Chiodini²⁶, D. Chren¹⁸, V. Cindro⁹, G. Claus⁷. J. Collot²⁷, J. Cumalat¹⁹, S. Curtoni²⁷, A. Dabrowski³ R. D'Alessandro⁴, D. Dauvergne²⁷, W. de Boer¹⁰, C. Dorfer²⁴, M. Dunser³, G. Eigen³⁰, V. Eremin⁶, J. Forneris¹⁵ L. Gallin-Martel²⁷, M-L. Gallin-Martel²⁷, K.K. Gan¹³ M. Gastal³, A. Ghimouz²⁷, M. Goffe⁷, J. Goldstein¹⁷ A. Golubev⁸, A. Gorišek⁹, E. Grigoriev⁸, J. Grosse-Knetter²³, A. Grummer²¹, B. Hiti⁹, D. Hits²⁴, M. Hoeferkamp²¹ T. Hofmann³, J. Hosselet⁷, F. Hügging¹, C. Hutson¹⁷. R. Jackman³¹, J. Janssen¹, R. Jennings-Moors³¹. H. Kagan^{13,}, K. Kanxheri²⁸, M. Kis⁵, G. Kramberger⁹, S. Kuleshov⁸, A. Lacoste²⁷, S. Lagomarsino⁴, A. Lo Giudice¹⁵, I. Lopez Paz²², E. Lukosi²⁵, C. Maazouzi⁷, I. Mandić⁹, S. Marcatili²⁷, A. Marino¹⁹, C. Mathieu⁷, M. Menichelli²⁸, M. Mikuž⁹, A. Morozzi²⁸, F. Moscatelli²⁸, J. Moss²⁹ R. Mountain²⁰, A. Oh²², P. Olivero¹⁵, A. Pakpour-Tabrizi³¹, D. Passeri²⁸, H. Pernegger³, R. Perrino²⁶, F. Picollo¹⁵, M. Pomorski¹¹, A. Porter²², R. Potenza², A. Quadt²³ F. Rarbi²⁷, A. Re¹⁵, M. Reichmann²⁴, S. Roe³, O. Rossetto²⁷, D.A. Sanz Becerra²⁴, C. Schmidt⁵, S. Schnetzer¹⁴ S. Sciortino⁴, A. Scorzoni²⁸, S. Seidel²¹, L. Servoli²⁸ S. Smith¹³, B. Sopko¹⁸, V. Sopko¹⁸, S. Spagnolo²⁶ S. Spanier²⁵, K. Stenson¹⁹, R. Stone¹⁴, B. Stugu³⁰ C. Sutera², M. Traeger⁵, W. Trischuk^{16,◊}, M. Truccato¹⁵, C. Tuve², J. Velthuis¹⁷, S. Wagner¹⁹, R. Wallny²⁴ J.C. Wang²⁰, J. Welch³¹, N. Wermes¹, J. Wickramasinghe²¹. M. Yamouni²⁷, J. Zalieckas³⁰, M. Zavrtanik⁹

116 Participants

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy 3 CERN, Geneva, Switzerland ⁴ INFN/University of Florence, Florence, Italy ⁵ GSI, Darmstadt, Germany ⁶ loffe Institute, St. Petersburg, Russia 7 IPHC, Strasbourg, France ⁸ ITEP, Moscow, Russia 9 Jožef Stefan Institute, Liubliana, Slovenia 10 Universität Karlsruhe, Karlsruhe, Germany ¹¹ CEA-LIST Technologies Avancees, Saclay, France 12 MEPHI Institute, Moscow, Russia 13 The Ohio State University, Columbus, OH, USA 14 Rutgers University, Piscataway, NJ, USA ¹⁵ University of Torino, Torino, Italy ¹⁶ University of Toronto, Toronto, ON, Canada ¹⁷ University of Bristol, Bristol, UK ¹⁸ Czech Technical Univ., Prague, Czech Republic 19 University of Colorado, Boulder, CO, USA ²⁰ Syracuse University, Syracuse, NY, USA ²¹ University of New Mexico, Albuquerque, NM, USA 22 University of Manchester, Manchester, UK ²³ Universität Goettingen, Goettingen, Germany 24 ETH Zürich, Zürich, Switzerland 25 University of Tennessee, Knoxville, TN, USA ²⁶ INFN-Lecce, Lecce, Italy ²⁷ LPSC-Grenoble, Grenoble, France 28 INFN-Perugia, Perugia, Italy 29 California State University - Sacramento, USA ³⁰ University of Bergen, Bergen, Norway ³¹ University College London, London, UK

31 Institutes

Rate Studies

» Diamond as a Particle Detector

- Diamond detectors are operated as ionization chambers
- Poly-crystalline material comes in large wafers

- Metalization on both sides
 - * Pad
 - * Strip
 - * Pixel
 - * 3D
- Connected to fast, low noise electronics

Study the pulse height dependence on the irradiation fluence

» Beam Test Setup

- Irradiate diamond samples with various particle species and energies
- Re-metalize after each irradiation step to fabricate a strip detector
- Characterization of irradiated devices in beam tests
- Tracking precision at detector under test: ~ 2-3 μm
- Transparent (unbiased) hit prediction from telescope
- Obtain position, pulse height correlation using strip detectors

» Signal Response of Irradiated Detectors

- Sum of charge observed on 5 contiguous strips near predicted hit position
- * Single-crystalline sample after 800 MeV proton irradiation

+2 V/µm

-2 V/µm

J. Phys. D: Appl. Phys. 52 (2019) 465103, DOI: 10.1088/1361-6463/ab37c6]

» Analysis Strategy

- Measure the signal response as a function of predicted position
- Derive mean free drift path (λ) from measured signals
- * First order damage model

$$n = n_0 + k'\phi$$

 $rac{1}{\lambda} = rac{1}{\lambda_0} + k\phi$

Fit in $1/\lambda$ vs ϕ space to determine k, λ_0

- thickness t
- number of traps n
- initial traps in material n_0 k'
 - damage constant
 - fluence
 - mean free path
- initial mean free path λ_0
 - damage constant

» Radiation Tolerance

- Plot single-crystalline (sCVD) and poly-crystalline (pCVD) data on same graph
- * Linear fit in $1/\lambda$ vs ϕ space
- Fit each sample separately to test agreement
- Observe same damage constant (=slope) for sCVD and pCVD diamond for all irradiation species and energies

[J. Phys. D: Appl. Phys. **52** (2019) 465103, DOI: 10.1088/1361-6463/ab37c6]

Radiation Tolerance

» Universal Damage Curve

- * Analysed proton, neutron, and pion irradiated samples Shifted pCVD samples by their individual $1/\lambda_0$
- Results are well described by first order damage model (one-parameter description), resulting in relative damage constants

$$\kappa = rac{k_i}{k_{24\,{
m GeV}\,{
m protons}}}$$

 With this measurement it is possible to estimate the signal response of any irradiated diamond detector

[Sensors **20** (2020) 6648,

DOI: 10.3390/s20226648]

Particle species	
24 GeV protons 800 MeV protons 70 MeV protons 200 MeV pions Fast neutrons	$\begin{array}{c} 1.0\\ 1.67\pm 0.09\\ 2.60\pm 0.29\\ 3.2\ \pm\ 0.8\\ 4.3\ \pm\ 0.4 \end{array}$

Radiation Tolerance

Rate Studies

» Signal Response Prediction

- * One-parameter description lends itself to universal damage curve
- Normalise damage to 24 GeV proton fluence

$$\phi_{ extsf{eq.}} = rac{k_i}{k_{24\, extsf{GeV protons}}} imes \phi_i$$

 $* \hspace{0.1in} \lambda$ vs ϕ space

*~ Predicted mean free path at $10^{17}/cm^2 \colon \sim 16\,\mu m$

[Sensors **20** (2020) 6648, DOI: 10.3390/s20226648]

Rate Studies

Study the pulse height dependence on the particle flux

» Setup

- *~ Increasing particle rate: LHC \rightarrow HL-LHC \rightarrow FCC
- $\ast~{\rm Characterization}$ in 260 MeV π^+ beam at PSI
- * Measure rate dependence of irradiated devices (up to $8 \times 10^{15} \text{ n/cm}^2$)
- * Irradiated pad detectors tested in ETH (CMS Pixel) telescope

19.8 ns bunch spacing clearly visible

» Rate Studies after Irradiation

HV

$+\mathsf{HV}$

- $\ast~$ No rate dependence (<2 %) observed in irradiated pCVD up to 10–20 MHz/cm^2
- $\ast~$ No rate dependence (<2 %) observed in irradiated pCVD up to $8\times 10^{15}~n/\mbox{cm}^2$

» Summary

\ast Quantified understanding of radiation effects in diamond

- Measured radiation tolerance up to fluences of 10¹⁶/cm² (relevant for tracker application in HL-LHC experiments)
- * Established universal damage curve
- * Devices now being studied up to $10^{17}/\text{cm}^2$
- $\ast\,$ Studied rate effects @2 V/µm
 - * Irrad. pCVD diamond shows no rate effect (<2 %) up to 20 $\rm MHz/cm^2$
 - * Irrad. pCVD diamond shows no rate effect (<2 %) up to $8 \times 10^{15} \, n/{\rm cm}^2$

Thank you!