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Diamond as a Detector Material Radiation Tolerance Rate Studies

» Motivation
∗ Estimated particle fluence for the innermost layers

∗ O(∼1015/cm2) at the LHC
∗ O(∼1016/cm2) at the HL-LHC
∗ O(∼1017/cm2) at the FCC
∗ Above 1016/cm2 all materials are trap limited

→ need for more radiation tolerant detector designs/materials

∗ Diamond as a detector material
∗ intrinsic radiation tolerance due to large displacement energy
∗ insulating material with high thermal conductivity
∗ high charge carrier mobility

∗ RD42 collaboration investigates signals and radiation tolerance
in various detector designs

∗ pad (full diamond as a single cell)
∗ strip (diamond segmented with multi-channel readout)
∗ pixel (diamond sensor on pixel chips)
∗ 3D to reduce drift distance in trap limited materials→ A. Porter’s
talk

→ complete characterisation of diamond radiation tolerance
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» The RD42 Collaboration
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Diamond as a Detector Material Radiation Tolerance Rate Studies

» Diamond as a Particle Detector

∗ Diamond detectors are
operated as ionization
chambers

∗ Poly-crystalline
material comes in large
wafers

∗ Metalization on both
sides

∗ Pad
∗ Strip
∗ Pixel
∗ 3D

∗ Connected to fast, low
noise electronics
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Radiation Tolerance
Study the pulse height dependence on the irradiation fluence
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Diamond as a Detector Material Radiation Tolerance Rate Studies

» Beam Test Setup

∗ Irradiate diamond samples with
various particle species and energies

∗ Re-metalize after each irradiation
step to fabricate a strip detector

∗ Characterization of irradiated
devices in beam tests

∗ Tracking precision at detector under
test: ∼ 2–3µm

∗ Transparent (unbiased) hit
prediction from telescope

∗ Obtain position, pulse height
correlation using strip detectors
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Diamond as a Detector Material Radiation Tolerance Rate Studies

» Signal Response of Irradiated Detectors
∗ Sum of charge observed on 5 contiguous strips near predicted
hit position

∗ Single-crystalline sample after 800MeV proton irradiation
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[J. Phys. D: Appl. Phys. 52 (2019) 465103, DOI: 10.1088/1361-6463/ab37c6]
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» Analysis Strategy

∗ Measure the signal response as a function of predicted position

∗ Derive mean free drift path (λ) from measured signals

∗ First order damage model

n = n0 + k′ϕ
1

λ
=

1

λ0
+ kϕ

∗ Fit in 1/λ vs ϕ space to determine k, λ0

t thickness
n number of traps
n0 initial traps in material
k′ damage constant
ϕ fluence
λ mean free path
λ0 initial mean free path
k damage constant
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» Radiation Tolerance

∗ Plot single-crystalline (sCVD)
and poly-crystalline (pCVD)
data on same graph

∗ Linear fit in 1/λ vs ϕ space

∗ Fit each sample separately to
test agreement

∗ Observe same damage
constant (=slope) for sCVD
and pCVD diamond for all
irradiation species and
energies 24GeV proton

due to initial
traps in poly

sCVD

pCVD

[J. Phys. D: Appl. Phys. 52 (2019) 465103,
DOI: 10.1088/1361-6463/ab37c6]
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» Universal Damage Curve

∗ Analysed proton, neutron, and pion
irradiated samples
Shifted pCVD samples by their
individual 1/λ0

∗ Results are well described by first
order damage model (one-parameter
description), resulting in relative
damage constants

κ =
ki

k24GeV protons

∗ With this measurement it is possible
to estimate the signal response of
any irradiated diamond detector
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24GeV protons 1.0
800MeV protons 1.67± 0.09
70MeV protons 2.60± 0.29
200MeV pions 3.2 ± 0.8
Fast neutrons 4.3 ± 0.4

[Sensors 20 (2020) 6648,
DOI: 10.3390/s20226648]
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» Signal Response Prediction

∗ One-parameter description lends
itself to universal damage curve

∗ Normalise damage to 24GeV proton
fluence

ϕeq. =
ki

k24GeV protons
× ϕi

∗ λ vs ϕ space

∗ Predicted mean free path at
1017/cm2: ∼ 16µm
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Rate Studies
Study the pulse height dependence on the particle flux
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Diamond as a Detector Material Radiation Tolerance Rate Studies

» Setup
∗ Increasing particle rate: LHC→ HL-LHC→ FCC

∗ Characterization in 260MeV π+ beam at PSI

∗ Measure rate dependence of irradiated devices (up to
8× 1015 n/cm2)

∗ Irradiated pad detectors tested in ETH (CMS Pixel) telescope
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19.8 ns bunch spacing clearly visible
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» Rate Studies after Irradiation
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∗ No rate dependence (<2%) observed in irradiated pCVD up to
10–20MHz/cm2

∗ No rate dependence (<2%) observed in irradiated pCVD up to
8× 1015 n/cm2
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» Summary

∗ Quantified understanding of radiation effects in diamond
∗ Measured radiation tolerance up to fluences of 1016/cm2

(relevant for tracker application in HL-LHC experiments)
∗ Established universal damage curve
∗ Devices now being studied up to 1017/cm2

∗ Studied rate effects @2V/µm
∗ Irrad. pCVD diamond shows no rate effect (<2%) up to
20MHz/cm2

∗ Irrad. pCVD diamond shows no rate effect (<2%) up to
8× 1015 n/cm2
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