A SYSTEM FOR BEAM ABORT AND LUMINOSITY DETERMINATION AT THE HL-LHC BASED ON POLYCRYSTALLINE CVD DIAMOND

Alice Porter*, Boštjan Maček, Moamen Abusareya, Andrej Gorišek, Harris Kagan, Marko Mikuž, Alexander Oh, Shane Smith

DPF 2021

12-14th July 2021

CONTRIBUTORS

THE BCM'

- BCM' = The ultimate ATLAS Beam conditions monitor
- Provides:
 - Fast bunch-by-bunch safety system
 - Background monitoring
 - Luminosity measurement
- Development for the HL-LHC = more particles per bunch crossing
- Location in the ATLAS ITK

BCM' WITHIN ATLAS

BCM' position within the removable inner pixel at z~1875mm to be close to 6.25ns timing sweet spot

 $r\sim100$ m gives $\mu\sim3.6$

4 modules per station, 8 in total

Each Module hosts

3000

3500

z [mm]

2500

- all functionalities:
 - > Luminosity
 - > Abort
 - > Amplification
 - > Digitisation
 - **Transmission**

THE PAST – ATLAS BCM

- Currently installed in ATLAS is a fast pCVD based system with asynchronous 2.56 GB/s readout
 - 4 modules per side, 1.9m from interaction point
 - 500ps time resolution
 - Installed into ATLAS Pixel support tube in 2007

- Post-mortem diagnostics buffer after each dump triggered by machine's BLM
- Aborts at danger level induced by UFO's
- Beam background diagnostics 500ps timing resolution cleanly resolves background
- Luminosity measurement stability problems in Run 2 conditions, low $S/N \sim 10$
- Abort&Lumi functions coupled
- Suffers from abort<->lumi incompatibility
 - Higher abort thresholds have to abandon lumi
 - Fast timing for abort lowers SNR limiting lumi stability

Design Details: **JINST 3 P02004 (2008)**

Separate functionalities for HL-LHC keeping commonality in a station

FUNCTIONALITY

- BCM Time of Flight (TOF) concept:
 - Out of time signals: are indicative of non-collision background (NCB) abort
 - In-time signals : carry physics information uminosity

FUNCTION (I) - BEAM ABORT

- Protection of inner detectors
- Out of time signals ~6ns before a collision
- Abort on out-of-time activity above the danger threshold
 - Pretty high $\sim 25 \text{k/cm}^2$ /bunch crossing which is 4000×1000 lumi induced signal
 - More sophisticated algorithms can be used to improve response for different fault scenarios
- Threshold settings need to be flexible
- Include machine style Beam Loss Monitor (slow 40µs integrating)

debris from collimators, beam gas, UFO, parasitic collision, etc...

FUNCTION (2) - LUMINOSITY

- Luminosity and background measurements require MIP sensitivity
- In-time signals (+6ns) carry physics information
- Out-of-time (-6ns) signals carry background information (NCB)
- Approach using event-counting algorithms
 - Statistics of in-time signal / absence of signal
 - Maximal statistical sensitivity r~0.2 = ~ 1.6 hits/cell
- Need a robust device, signal stability is paramount
- Have to consider a large range of µ
 - Calibration in VdM scan ~0.01 in tails
 - Ultimate HL-LHC lumi $\mu = 200$

BCM in ATLAS Luminosity determination: Eur. Phys. J. C (2016) 76:653

DIAMOND DETECTORS

- Polycrystalline chemical vapour deposition diamond sensors (pCVD)
 - Robust, low capacitance, low leakage current, fast signal, radiation hard and no cooling
 - I-2 wafers grown for the project
- Charge collection evaluated to be ~9ke @ 2V/µm
- 4 types of sensor on the station
 - Luminosity:
 - 3-pad segmented diamond $10 \times 10 \text{ mm}^2$ (max ~50 mm², min~ 1mm²)
 - I x I mm² 3D detector
 - Dynamic range Small silicon detector
 - Abort:
 - 5×5 mm² with 4-pad segmentation

3D pCVD diamond

CALYPSO ASIC

- Radiation hard analogue front end third iteration now tested = "Calypso C"
 - Designed by OSU
 - Separate functionality for abort (high signals) and luminosity (low noise)
- Specs:
 - Optimised for 2-5pf detector capacitance
 - Current amplifier: < Ins rise time, fast < I5ns settling time @2pF
- Tested with multiple powering schemes to be radiation hard to 200Mrad

	noise [e]	range[e]
lumi	110+55/pf	50k
abort	830k	750M

BCM' module = sensor + analogue front end + PicoTDC +lpGBT + VTRx + optical fibre in/out

SUMMARY

- The BCM' is a fast protection and luminosity measurement device inside the ATLAS ITk inner pixel end cap
- Offers advanced per-bunch luminosity measurement in a robust and flexible way
- All components in progress and coming together
- To be ready for installation in 2023

Thank you for your attention!

BACKUP

READ OUT - LUMINOSITY

- The number of channels and their selection chosen at config time: 3 or 6 out of 8
- Able to tune the dynamic range to optimal coverage of the running parameters of LHC

READ OUT - ABORT

- Smaller number of pads emphasis on redundancy not dynamic range
- · A separate picoTDC so the data composition (rise-time/width) can differ from the one for luminosity flexible

BACK UP - ANTICIPATED INSTALLATION DATE

