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The CMS Pixel Detector 

• Records the 3D trajectory of the charged particles through 
millions of silicon pixels
• Robust seeding for track-pattern recognition

• Reconstructing primary, secondary vertices

• Fast tracking at trigger level etc. 

• Closest to the interaction point, extremely radiation-hard

• Layout covers −3 < 𝜂 < 3
• 4 barrel layers arranged cylindrically

• 3 layers at endcaps in turbine geometry

• Phase-1 pixel size : 100𝜇𝑚 Χ 150𝜇𝑚 Χ 285𝜇𝑚

• Coordinate system: Local 𝑥 − 𝑦 − 𝑧
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Fig 1. Phase-1 Pixel Detector Layout



Current Local Reconstruction

• Goal: to obtain local x and y position of track hits, and their errors

• Resolution is improved by charge sharing 
• Lorentz drift in local-x (due to magnetic field) 

• Geometry in local-y 

• Important parameters: track angles 𝛼 and 𝛽
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Fig 2. Illustration of track angles in the barrel



Algorithms currently used

• Generic Algorithm (used at High Level Trigger + 
Offline)
• Quick, formula-based, does not necessarily require track 

angle information 

• Has a good performance for unirradiated sensors, does not 
model radiation damage very well

• Template Algorithm (used Offline)
• Slow, uses track angle information   

• Fits clusters to projected cluster shapes generated from 
PIXELAV - a detailed sensor simulation 

• Has a superior performance for all sensors – models 
radiation damage very well

7/14/2021 S. Sekhar 4

Fig 3. Illustration of a template



Motivation for this study

• CMS is moving to heterogeneous computing at the High Level Trigger from 
2022 

• Template and generic algos don’t work well with GPU integration -> changes 
to the CPE (Cluster Position Estimate) algos desirable 
• Template object files are too large, cannot be read efficiently into GPUs    

• Performance of the generic algo decreases with heavy radiation damage

• Goal: to devise an algorithm that has the performance of the template 
algorithm that can perform inference with the speed of the generic algorithm

• Attempt: Neural networks
• Computations involve millions of vector multiplication operations -> very compatible 

with GPUs!
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Neural Networks

• Artificial neural networks (NNs) are computing systems that are 
very good at extracting underlying patterns in data without being 
explicitly programmed to do so

• Gained a lot of interest since ImageNet challenge in 2012
• Visual recognition of objects in ~14 million images using neural 

networks

• CMS and ATLAS are also using deep learning in various tasks now
• Jet reconstruction/classification
• Jet substructure 
• b-tagging
• Many more

• Supervised NNs are collections of nodes/neurons that together 
approximate a complex non-linear function
• We can aggregate layers of neurons to extract more features: deep 

neural network

7/14/2021 S. Sekhar 6

Fig 4. A NN with hidden layers



Convolutional Neural Networks

• Convolutional NNs are special types of NNs:      

• Extremely good at seeking hierarchical patterns in images

• Require less preprocessing and reduced computational power

• Complex components:
• Convolutional kernels/filters, Pooling, Batch Normalization, Dropout 

etc.     

• Fully connected layers just like in DNNs to produce final outputs
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Fig 6. A toy CNN architecture

Fig 5. A filter in action



Neural Networks

• We train three models of NNs to predict the hit position (x,y) of a cluster of single particle hits 

• Hybrid 2D CNN (CNN+deep NN) 

• Hybrid 1D CNN – independent for x and y 

• Deep fully connected NN (DNN) – independent for x and y 

• Model details:

• Optimizer: Adam 

• Activation: ReLU

• Loss: mean squared error

• Inputs: 13x21 matrix of pixels(or 1D projections) from PIXELAV simulations + Track angles cot 𝛼, cot 𝛽

• 10 million clusters for training, ~300k clusters for testing

• Unirradiated and irradiated clusters (2.3 Χ 1015 𝑛𝑒𝑞/𝑐𝑚
2)

• All clusters have been preprocessed to simulate real clusters in the detector 

• Applied tanh gain with appropriate noise parameters to describe the true pre-amplifier response, and implemented 
readout chip threshold

• Implemented realistic cluster centering: shifted the geometric center of cluster to center of the matrix
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Residuals
• We discuss our results by studying residuals: distributions of (𝑥𝑝𝑟𝑒𝑑 − 𝑥𝑡𝑟𝑢𝑒) and (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)

• 𝑥𝑝𝑟𝑒𝑑 , 𝑦𝑝𝑟𝑒𝑑: Hit positions predicted by the neural network algos
• 𝑥𝑡𝑟𝑢𝑒 , 𝑦𝑡𝑟𝑢𝑒: True hit positions 

• The residual distributions are fitted by the Gaussian function
• Standard deviation (σ) of gaussian fit characterised well the peak of the residual distribution

• However, to characterize the overall behaviour of the algorithm the standard deviation of the residual 
distribution (denoted by RMS) is also used as it better captures the tails of the distribution 
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2D CNN

CMS Work in progress

DNN

CMS Work in progressCMS Work in progress
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Fig 6. Residuals in x for Phase-1 irradiated clusters. More residual plots can be found in [4]



Results
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• We can see that the while the template algorithm does provide superior resolution, the 
CNNs’ predictions have the smallest RMS .



Conclusion

• Neural Networks are doing well as Cluster Parameter Estimators and show 
promise!   

• We have currently ironing out kinks in the implementation of inference within the 
CMS software framework as well as standalone (python and C++)    

• In the long run, we expect that the improved local reconstruction will provide 
possible improvements to b-tagging and physics with data scouting  
• Precise reconstruction at the pixel detector will improve vertexing and b-tagging, lending 

usefulness to several physics analyses

• In Phase-2 runs we will use data scouting by taking advantage of fast and accurate 
reconstruction at the HLT. Improvements to pixel local reconstruction at the HLT are thus 
desirable.

• Next steps: Error estimation and training the networks on double width pixels 
• In each ROC, the pixels on the edges are double the width of a regular pixel. Doubling of size -> more charge 

deposition.

7/14/2021 S. Sekhar 11



References

• A new technique for the reconstruction, validation, and simulation of hits in the 
CMS pixel detector. M. Swartz (CERN), D. Fehling (CERN), G. Giurgiu (CERN), P. 
Maksimovic (CERN), V. Chiochia (CERN). DOI: 10.22323/1.057.0035. Published in: 
PoS VERTEX2007 (2007), 035S. 

• Position Determination of Pixel Hits. Susanna Cucciarelli (Basel U.), Danek Kotlinski 
(PSI, Villigen), Teddy Todorov (CERN)

• A Detailed Simulation of the CMS Pixel Sensor. M. Swartz (2002). 

• Our presentation to the CMS ML Forum, Feb 24, 2021: https://bit.ly/3fDUeCu

7/14/2021 S. Sekhar 12

https://bit.ly/3fDUeCu


BACKUP

7/14/2021 S. Sekhar 13



Results: Unirradiated clusters
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Comparison of NNs to other CPE algos : x

TemplateGeneric

2D CNN DNN 1D CNN

Algo RMS(μm) σ(μm)

2D CNN 10.59 10.56

1D CNN 12.79 12.78

DNN 11.99 11.98

Template 11.8 6.607

Generic 17.89 5.915

Generic
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Comparison of NNs to other CPE algos : y

TemplateGeneric

DNNCNN 1D CNN

Algo RMS(μm) σ(μm)

2D CNN 20.00 10.56

1D CNN 20.30 12.78

DNN 20.26 19.99

Template 20.52 16.11

Generic 21.83 17.68



Results: Irradiated clusters
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Comparison of NNs to other CPE algos : x

Algo RMS(μm) σ(μm)

2D CNN 11.77 11.75

1D CNN 14.1 14.09

DNN 14.53 14.53

Template 17.2 14.34

Generic 22.52 17.12

CNN

CMS Work in progress

DNN

CMS Work in progress

Generic

CMS Work in progress

Template

CMS Work in progress

1D CNN

CMS Work in progress
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Comparison of NNs to other CPE algos : y

CNN DNN

TemplateGeneric

1D CNN

Algo RMS(μm) σ(μm)

2D CNN 26.95 26.9

1D CNN 38.97 38.97

DNN 29.99 29.19

Template 29.96 27.92

Generic 37.22 32.1


