
The HCCStar ASIC for the ATLAS ITk silicon strip detector:
design and verification

Ben Rosser

University of Pennsylvania

July 11, 2021

Ben Rosser (Penn) DPF 2021 July 11, 2021 1 / 11



Introduction to HCCStar Version 1

Hybrid Controller Chip (HCCStar): ASIC being developed for ITK strip detector.
Major operational problems seen when irradiating the first HCC prototype ("V0").
New revision ("V1") currently being designed with improved radiation protection:

Increased mitigation against radiation-induced single event effects (SEEs) in digital logic.
Extensive SEE simulation campaign to verify mitigation works before fabricating the chip.
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https://cds.cern.ch/record/2257755?ln=en


Digital Design

HCC logic written at register transfer level in Verilog hardware description language.
Verilog source code then compiled down into logic gates in synthesis process.
Logic gates then mapped onto physical ASIC layout in place and route (PNR) process.

// Verilog source code
module example;

input wire a;
input wire b;
output wire x;

// x = a AND (NOT B)
assign x = a && !b;

endmodule A B

X = A ∧ B̄
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Single Event Effects in ASICs

Radiation can cause different kinds of single event effects (SEEs) in digital logic.
SEEs can cause data corruption or errors that may require a reset to fix.
Worried about two types of SEEs in the HCC: upsets and transients.

Single Event Upsets (SEUs):
Ionizing particle causes change of state.
Affects flip-flops (Verilog reg type).
Permanent change of state; lasts until
corrected.
Existing mitigation in prototype
HCCStar design: attempted to protect
critical area, like configuration registers
and state machines.

Single Event Transients (SETs):
Voltage pulse propagating through circuit
causing signals to invert.
Affects logic gates (modelled using
Verilog wire type).
Temporary pulse; inversion lasts for a
short time (< 1 ns).
Very limited existing mitigation in
prototype HCCStar design.
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Triplicating Digital Logic

Triplication, formally triple modular redundancy (TMR), used to protect against SEEs.
Three copies of logic, use best-out-of-three majority voting to correct errors.

Logic must be spaced far enough apart so one
particle can’t cause two SEEs at the same time.
HCC V0 had some triplication of key flip-flops, like
configuration registers and state machines.
For protection against SETs: need to triplicate all
logic– including majority voters– not just flip-flops.
Full triplication expensive; three logic paths take
up lots of space on physical chip.
CERN tmrg tool used for automatic triplication.

Wikipedia
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https://gitlab.cern.ch/tmrg/tmrg
https://commons.wikimedia.org/wiki/File:Triple_Modular_Redundancy_et_sa_variante_am%C3%A9lior%C3%A9e.png


HCCStar V1 Design Changes

HCC now mostly triplicated:
Physics data not fully
protected in input channels.
Event ID is protected: SEEs
can only corrupt one event.

Some trade-offs necessary to
reach this level of protection:

Memory buffers made smaller.
Input channel SRAMs
reimplemented as FIFOs.

Deglitcher circuits added for
additional SET protection.
Even with changes, could not
route triplicated design without
increasing chip width.

HCC widened from 3560µm (V0, left) to 4226µm (V1, right) in
order to fit triplicated logic.
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HCCStar Verification using Cocotb

Digital logic verification done with Python-based testbench powered by cocotb.
HCC runs on Cadence Xcelium simulator, controlled via cocotb library from Python.

Testbench built for V0, updated for V1:
Python implementations of serial protocols.
Python model of ABCStar data flow can
generate packets in response to commands.
Tests are fully self-checking; full suite ran
nightly for continuous integration.

Testbench used for both HCC-only and
hybrid-level simulations:

Real ABC used instead of Python model.
Used to simulate data flow with realistic
HL-LHC conditions.
For V1, added support for module-level
simulations with AMAC too.
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https://github.com/cocotb/cocotb


Rapid SEE Simulations

Cocotb testbench used to build rapid SEE
simulation framework for HCC V1.
Inject SEEs as fast as possible, maximize
chances of finding problems.
Run simple loop to probe chip behavior.

HCC-only: read out physics data and
registers continuously.
Hybrid/module-level: run realistic data
flow simulations, inject SEEs on HCC.
Run over post-PNR, gate-level design.

Measure severity of any detected issues:
First see if chip recovers without a reset.
Attempt "soft" reset (no reconfiguration)
before full "hard" reset.

Inject SEE on
random t a rge t .

Were errors
 d e t e c t e d ?

Pick new SEE target
and  cont inue .

No

Pause SEEs. Do
errors  cont inue?

Yes

Recovered,
resume SEEs.

Yes

Issue reset .  Did
it fix problem?

No

Yes

Are  there  more
 rese ts  to  t ry?

No

Abort
simulation.

No

Yes
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SEEs in Triplicated Logic

SEEs on triplicated logic should cause no errors if TMR implemented correctly.
Run separately over TMR, non-TMR parts of chip: confirm no errors in TMR simulation.
Attempt to automatically detect potential triplication errors in real time:

Most TMR copies of flip-flops should be updated by majority voter every clock cycle.
Automatic check: look for redundant copies, check that all three agree after SEE.
This check found problems: after investigation, discovered some real bugs in the chip:
signals not properly refreshed by voter could allow SEEs to accumulate over time.
Catches SEE vulnerabilities immediately, without waiting for data errors to be detected.
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SEEs in Untriplicated Logic

Errors expected in non-TMR logic:
use simulation to estimate rates.

Understand different failure modes.
How often are resets required?
Hard resets require reconfiguration:
ensure they are rare.

Perform high-statistics simulations
with 100 SEEs per wire/flip-flop.
Snapshot of current results:

In 3 days, reached SEU goal,
performed 25% of SETs.
Low error rate, very few hard resets.
Results must be confirmed on final
version before submission. Injected 6M SEEs, found 18243 errors (0.3%), of which 3109

(17%) required a reset, only 3 (0.016%) required hard reset.
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Current Status and Conclusion

When designing particle detector electronics, SEE mitigation very important:
Add as much protection as possible!
Consider both SETs and SEUs when adding mitigation to a chip.

Python-based verification using cocotb is a very powerful tool for ASIC design.
SEE simulations using cocotb testbench are essential tool in SEE mitigation:

Used to confirm and track down problems seen during V0 irradiations.
Found and fixed many triplication-related bugs, removing potential SEE vulnerabilities.
Helping to build confidence in V1 radiation tolerance prior to submission.

Thank you for your attention!
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