Development of a High-Speed Hit Decoder for the RD53B Chip

Donavan Erickson MSEE ACME Lab

ELECTRICAL ENGINEERING

UNIVERSITY of WASHINGTON

ATLAS

- > Major experiment site in Large Hadron Collider (LHC)
- > High Luminosity LHC upgrade
 - Roughly factor of 4x [2]
- > New ITk Pixel detector
 - Read out chip upgrade
- > RD53 collaboration started to create new read out chips

Figure 2: Computer rendering of the ATLAS detector system. [1]

RD53B

- > Analog islands in digital sea [4]
- > 4-pixel analog front ends per island
- > Pixel front end detects when passing charge reaches threshold value ("Hit")
- > Digital logic for read out and Time over Threshold (ToT)

Figure 3: Layout of analog islands with surrounding digital logic. Four complete islands are seen in the middle of the image. [4]

RD53B

- > Arranged into cores (8x8 pixels or 16 analog islands) [4]
- > ATLAS configuration
 - 48 core rows
 - 50 core columns
- > Hits separated into quarter rows (16 pixels total in 2X8 format)

Figure 4: Visualization of RD53B quarter row selection process.

Data Streams

- > Captures all quarter rows with active hits [4]
- > Sent in 64 bit packets
- > Meta data for stream packing
- > Quarter rows packed back to back

1 Tag1 [8] Ccol1[6]	1 0 Qrow1[8] Hmap[4 to 30	D] ToTs[4 to 64]	Ccol2[6] 0 Qro			
0 w1[8] Hmap[4 to 30]	ToTs[4 to 64] 1 0 Qrow2[8]	Hmap[4 to 30] ToTs[4	to 64] 0 0 0 0			
NS bit Tag Ccol Qrow islast isneighbor Hit map ToT's Orphan bits						
Figure Fr Eventuals DDF2D stream date [4]						

Figure 5: Example RD53B stream data. [4]

Encoding Method

Figure 6: RD53B encoding cut pattern.

Hitmap Encoding

- > Encode using bit pairs (11, 10, 01) [4]
- > Final encoding {first two bits, first row, second row}
- No 00 pairs allows for Huffman encoding
- > Swap all 01 bits with 0

Figure 7: Hitmap encoding breakdown using two hits Result: 11.101010.010101 Swap 01 with 0 Compressed Result: 11.101010.000

Figure 8: Encoded hitmap with maximum number of values.

- > Row data no longer than 14 bits
- > First 2 bits show which rows have hits
- > One 14-bit ROM per row

ROM Split

- > Software to hardware conversion
- > Creates two 14x16 ROMs
- > Large outputs for meta data and decoded hitmap

Figure 9: High level block diagram of split ROM system.

Decode Engine: ROM & data storage

Figure 10: Decode engine high level full diagram.

- > Buffer to store stream data
- > Data consume state machine to process data
- > Creates registered output

Base Design

- > Stream distribute to pass data to engines
- > Variable amount of decode engines
- > Shared ROM distribute system

Figure 11: Top level diagram of initial full design for hardware decoder.

ROM Timing

cycle_number	1 2 3 4 5 6 7 8 9 10 11 12
clk	
first_row_req1	//////eng0(eng1(eng2(eng3(eng4(eng5(eng0)////////////////////////////////////
first_row_req2	//////////////////////////////////////
first_row_out1	(eng0)(eng1)(eng2)(eng3)(eng4)(eng5)(eng0)
first_row_out2	//////////////////////////////////////
sec_row_req1	(eng0)(eng1)(eng2)(eng3)(eng4)(eng5)(eng0)
sec_row_req2	(eng6)(eng7)(eng8)(eng9)(eng1)(eng1)(eng6)
sec_row_out1	(eng0\eng1\eng2\eng3\eng4\eng5\eng0
sec_row_out2	(eng6)(eng7)(eng8)(eng9)(eng1)(eng6)(eng7)(eng8)(eng9)(eng1)(eng6)

Figure 12: Timing diagram for the engine offsets for accessing centralized ROM system.

- > 6 cycles to process hitmap
- > Offset engines
- > 12 engines with dual port ROMs

Interpretation of Results

Table 1: Number of engines need based on hits per quarter row and compression.

Max/Min compression	Ccol + Qrow size	Hitmap	тот	Total	Speed Per Engine (Gb/s)	# Engine Needed
1 hit max	2 bits	4 bits	4 bits	10 bits	10/37.5ns = 0.267	5.12/0.267 = 19.23 (20)
1 hit min	16 bits	8 bits	4 bits	28 bits	28/37.5ns = 0.747	5.12/0.747 = 6.86 (7)
2 hit max	2 bits	5 bits	8 bits	15 bits	15/37.5ns = 0.4	5.12/0.4 = 12.8 (13)
2 hit min	16 bits	14 bits	8 bits	38 bits	38/37.5ns = 1.01	5.12/1.01 = 5.069 (6)

- > Analyzed ATLAS simulation data
 - Average of 1-2 hits per quarter row
- > 37.5ns per quarter row of data
- > Target of 5.12 Gb/s
 - Max output of RD53B chip

Resources for Each Configuration

Table 2: The summary of resource usage cases for different hardware decoder configurations based on hits per quarter row.

Hits per quarter row w/ compression	Bits per quarter row	Single engine (Gb/s)	12 engine (Gb/s)	Engines needed	Estimated BRAM usage	Estimated LUT usage
1 max	10 bits	0.267	3.2	20	94	42,000
2 max	15 bits	0.4	4.8	13	73	27,300
1 min	28 bits	0.747	8.96	7	38	14,700
2 min	38 bits	1.01	12.16	6	35	12,600

- > Each hardware decoder instantiation
 - 15 BRAM for ROM split
 - 2 BRAM for stream distributer
 - Max 12 engines per instantiation
- > Each decode engine 3 BRAM, 2100 LUTs

- LHC upgrade to High Luminosity LHC
- RD53B specific encoding
- Create base design hardware based decoding
- Estimate use case resource numbers

References

- > [1]. "CERN website", CERN, [Online], Available: <u>https://home.cern/</u>
- > [2]. "High Luminosity LHC Project", CERN, [Online], Available: <u>https://hilumilhc.web.cern.ch/</u>
- > [3]. Chistiansen, Jorgen, Loddo, Flavio, "RD53 Collaboration Proposal: Extension of RD53", RD53, September 6, 2018
- > [4]. "The RD53B Pixel Readout Chip Manual v1.31", RD53, September, 2020
- > [5]. "The RD53B Pixel Readout Chip Manual v0.38", RD53, April 14, 2020
- > [6]. "7 Series FPGAs Memory Resources v1.14", Xilinx, July 3, 2019
- > [7]. Timon Heim, private communication, 2021
- > [8]. McMahon, Stephen; Pontecorvo, Ludovico, "Technical Design Report for the ATLAS Inner Tracker Strip Detector", CERN, April 1, 2017
- > [9]. "CERN atlas website", CERN, [Online], <u>https://atlas.cern/discover/detector</u>

