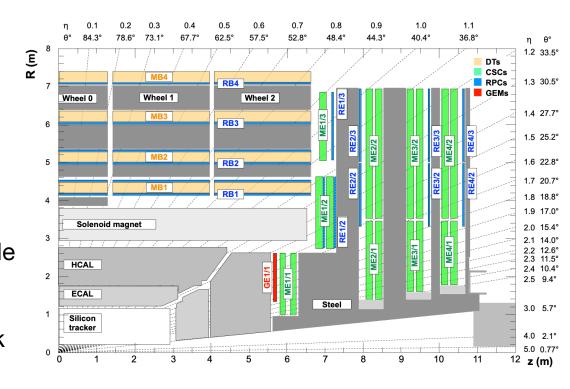


The CMS GEM Commisioning and Alignment Status


Devin Aebi on behalf of the CMS Collaboration Texas A&M University

Hyunyong Kim, Towsifa Akhter

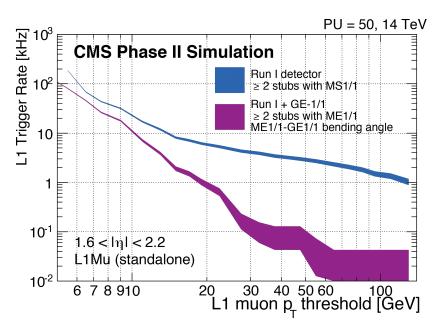
What is CMS/GEM

- The CMS muon system plays an important role in the discovery of new physics like the Higgs boson and new particles.
- The high luminosity LHC (HL-LHC) upgrade will improve the discovery power by increasing luminosity but will require highperformance muon trigger and muon track reconstruction, especially in the forward endcap region.
- The CMS collaboration has been developing a Gas Electron Multiplier (GEM) detector for the endcap regions of the CMS muon system.
- The new sub-detector system requires a new procedure of commissioning and alignment to be developed.

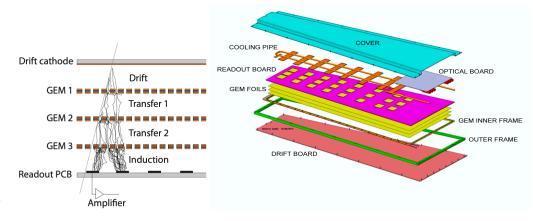
CMS-TDR-013 Fig. 1.1

GE1/1: GEM End-cap station1 ring1

Drift Tube chambers (DTs)


Cathode Strip Chambers (CSCs)
Resistive Plate Chambers (RPCs)

Why Add GEM



- Motivations in the high luminosity LHC collider (HL-LHC)
 - GEM-CSC combined operation measures the bending angle at trigger level, thus strongly reducing the rate of mismeasurements
 - Improve tracking performance in high background rate environment
 - Will reduce trigger rate by a factor of 10
 - See previous talk by Brendan Regnery for more on the detector:

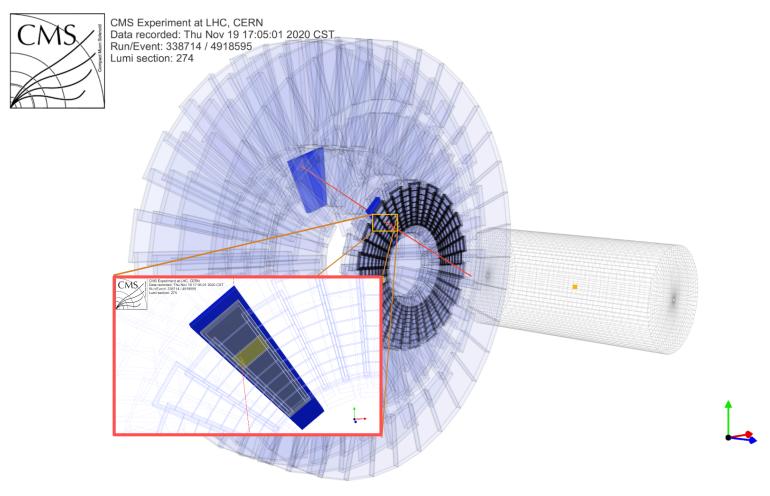
Installation and commissioning status of the new GEM muon detectors in the CMS experiment https://indico.cern.ch/event/1034469/contributions/4431721/

CMS-TDR-013 Fig. 1.2

CMS-TDR-013 Fig. 1.3

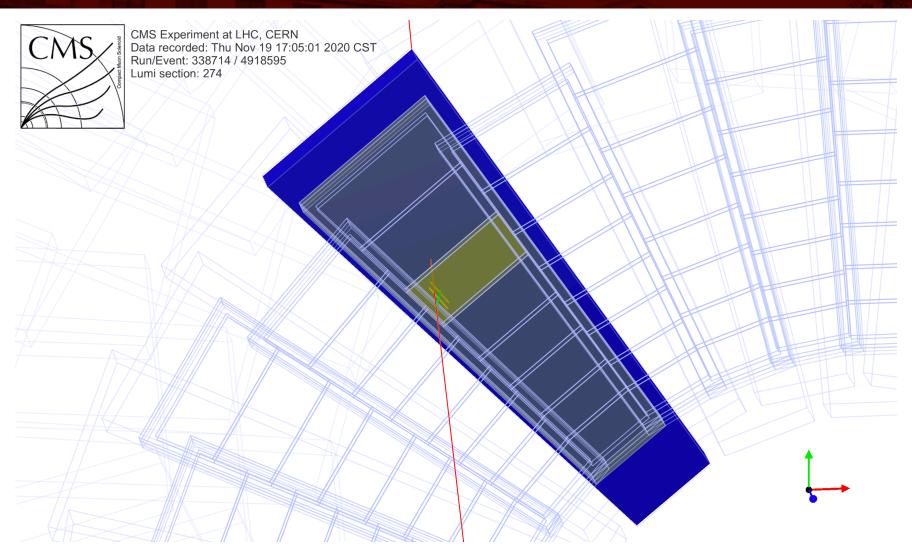
GE1/1 Installation

- GE-1/1 (negative endcap): Completed in Oct. 2019
- GE+1/1 (positive endcap): Completed in Oct. 2020, delayed 6 months due to pandemic


Global Run

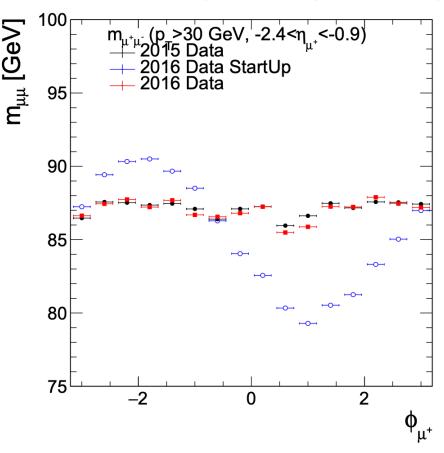
- CMS GE1/1 demonstration during Run2 (slice test)
 - All new DAQ system has been integrated
 - Challenges have been successfully overcome and have lead to significant improvements in system design
 - Improved GEB and VFAT design reduced electronic noise and channel loss
- CMS GEM has participated in global commissioning (cosmic run)
 - The DAQ system shows correct data format integrity through data quality monitoring
 - Latency and HV scans performed
- On/offline Data Quality Monitoring has been integrated
- Data certification procedure is ready

Event Display



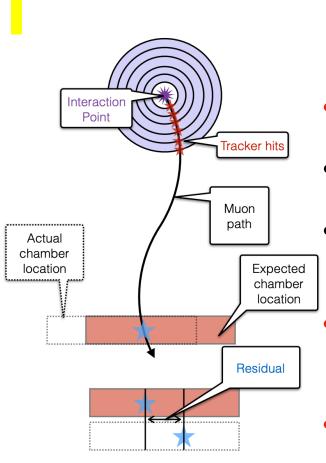
Cosmic ray muon candidate recorded during the CMS data taking exercises in November 2020. A muon track (red line) through ME chambers (in blue) at Stations $3 \rightarrow 1$ points back at GE-1/1 super-chamber 14 (Sector 3).

Event Display


Cosmic ray muon candidate recorded during the CMS data taking exercises in November 2020. A muon track (red line) through ME chambers (in blue) points back at GE-1/1 super-chamber 14 (Sector 3) (highlighted in yellow). GEM hits on layers 1 and 2 are shown with yellow lines. The green line is a reconstructed GEM muon segment.

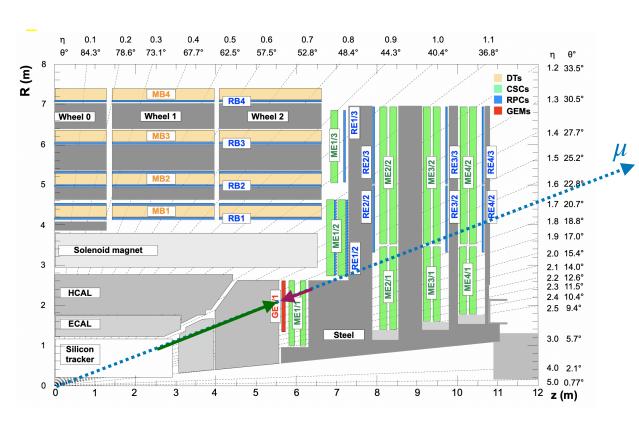
Alignment

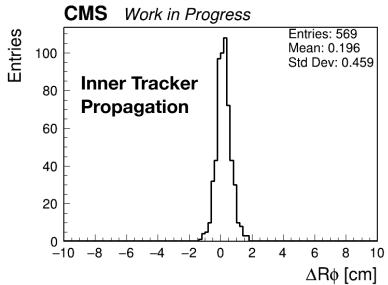
- Misalignment causes incorrect particle reconstruction
- Why alignment is important for GEM
 - End-cap is opened frequently creating small misalignments
 - GEM-CSC trigger uses bending angle between GEM and CSC for triggering, requiring accurate relative alignment

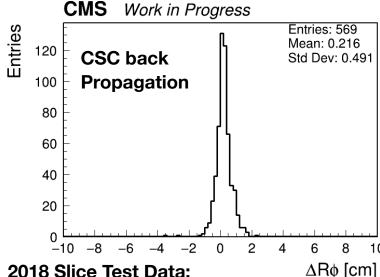


Comparison of di-muon (Z candidate) mass between misaligned geometry (blue dot) and aligned geometry (red dot) shows significant reconstruction improvement

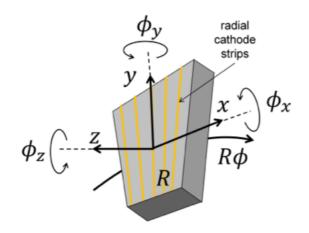
Track-based Muon Alignment




- Track-based muon alignment (TBMA)
 - Propagate the tracker part of muons into muon system
 - Muon residual: difference between reconstructed position and predicted position on the muon chamber
- The TBMA technique is proven to be efficient, robust, and stable in Run1 and Run2
- The algorithm is developed and integrated into CMSSW framework
- Sources of possible systematic uncertainties have been investigated and various improvements to reduce their effect are being developed
 - Muon system alignment is very important for muon reconstruction and TBMA has good accuracy of 100 μ m order
- GEM-CSC trigger requires good GEM alignment accuracy
 - The relative GEM-CSC position is more important for the GEM alignment due to its use in the trigger
 - GEM alignment needs a new method

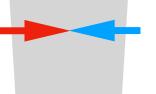

GEM-CSC Back-propagation

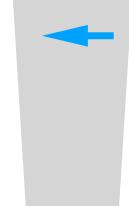
- Inner tracker propagation: pass through large mass, reference position is inner tracker
- CSC-back propagation: less scattering, reference position is ME1/1



Region -1, Chamber 28, Layer 2 $P_T > 30$ GeV, contains ME11 segment

GEM Alignment Variables




 $\delta x \rightarrow$

$\Delta R \phi = \cos \theta * \Delta x + \sin \theta * \Delta y$ θ : strip angle of recHit

AX: Xprediction - XrecHit **Ay:** Yprediction - YrecHit

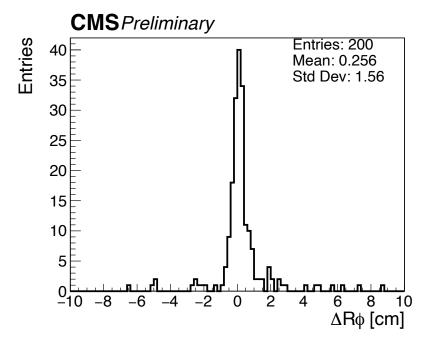
Measured Position

Misalignment

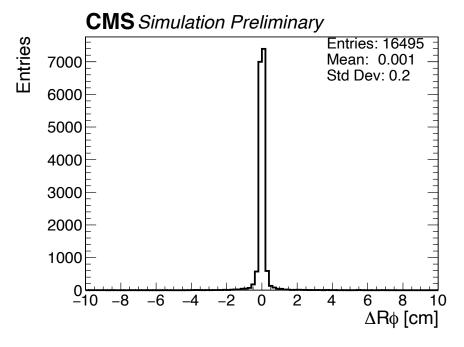
$$\Delta(R\phi) = \delta x + \left[-\frac{x}{R} + 3\left(\frac{x}{R}\right)^3 \right] \delta y - \frac{dx}{dz} \delta z - y \frac{dx}{dz} \delta \phi_x + x \frac{dx}{dz} \delta \phi_y - y \delta \phi_z$$

GEM Alignment Status

- Accuracy studies have been done 300 μm expected
 - Test with a CMSSW simulation
 - The GEM alignment accuracy is comparable to the GEM spatial resolution
- Minimizer
 - MINUIT package
 - 1 DOF (δx , dominant alignment parameter) is working
 - Based on the alignment of the CSCs
- Test with dataset
 - Several global runs
 - 2018 slice test datasets


GEM Alignment Residual

GEM hits were detected during the CMS data taking exercises in November 2020. Each muon has GEM hits on the same η sector at the position predicted by back-propagation of an ME muon track. The matching requirement is $\left| \Delta R \varphi \right| \equiv \left| R \varphi_{GEM} - R \varphi_{pred} \right| < 10$ cm (bottom left). This is compared to


Monte Carlo simulation (bottom right). ⇒ Cosmic ray muons will be used for an initial GEM-ME alignment.

ME segments back-propagated

Before alignment

Cosmic Muon Simulation

Ideal geometry

- CMS GEM was developed to improve muon endcap trigger and tracking for HL-LHC
- First upgrade GE1/1 installation is completed
- Commissioning activities
 - Noise investigation
 - Thresholds and HV working point optimization
 - GEM-CSC EMTF trigger test
- CMS GEM has participated in global commissioning
- GEM Alignment is important for the GEM-CSC trigger
 - Accuracy studies have been done 300 μm expected
 - Tested with several MCs and datasets

References

[1] CMS Collaboration, "The CMS Experiment at the CERN LHC," *JINST*, vol. 3, p. S08004, 2008.

[2] CMS Collaboration, "Alignment of the CMS muon system with cosmic-ray and beam-halo muons," *JINST*, vol. 5, p. T03020, 2010.

[3] CMS Collaboration, "Alignment of the CMS tracker with LHC and cosmic ray data," *JINST*, vol. 9, p. P06009, 2014.

[4] CMS Collaboration, "Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s}=13$ TeV," *JINST*, vol. 13, p. P06015, 2018.

[5] CMS Collaboration, "CMS Technical Design Report for the Muon Endcap GEM Upgrade", 2015

Backup

Projection Matrix δx

$$\begin{pmatrix} \Delta(R\phi) \\ \Delta y_o \\ \Delta \frac{d(R\phi)}{dz} \\ \Delta \frac{dy}{dz_o} \end{pmatrix} = \begin{pmatrix} 1 & \left[-\frac{x}{R} + 3\left(\frac{x}{R}\right)^3 \right] & -\frac{dx}{dz} & -y\frac{dx}{dz} & x\frac{dx}{dz} & -y \\ 0 & 1 & -\frac{dy}{dz} & -y\frac{dy}{dz} & x\frac{dy}{dz} & x \\ 0 & -\frac{1}{2R}\frac{dx}{dz} & 0 & \left[\frac{x}{R} - \frac{dx}{dz}\frac{dy}{dz} \right] & 1 + \left(\frac{dx}{dz}\right)^2 & -\frac{dy}{dz} \\ 0 & 0 & 0 & -1 - \left(\frac{dy}{dz}\right)^2 & \frac{dx}{dz}\frac{dy}{dz} & \frac{dx}{dz} \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \phi_x \\ \delta \phi_y \\ \delta \phi_z \end{pmatrix}$$

Chamber shift $+\delta x$

- **★** GEM recHit
- **★** Propagation position

$$\Delta R \phi = \delta x$$

Projection Matrix δy

$$\begin{pmatrix} \Delta(R\phi) \\ \Delta y_o \\ \Delta \frac{d(R\phi)}{dz} \\ \Delta \frac{dy}{dz_o} \end{pmatrix} = \begin{pmatrix} 1 & \left[-\frac{x}{R} + 3\left(\frac{x}{R}\right)^3 \right] & -\frac{dx}{dz} & -y\frac{dx}{dz} & x\frac{dx}{dz} & -y \\ 0 & 1 & -\frac{dy}{dz} & -y\frac{dy}{dz} & x\frac{dy}{dz} & x \\ 0 & -\frac{1}{2R}\frac{dx}{dz} & 0 & \left[\frac{x}{R} - \frac{dx}{dz}\frac{dy}{dz} \right] & 1 + \left(\frac{dx}{dz} \right)^2 & -\frac{dy}{dz} \\ 0 & 0 & 0 & -1 - \left(\frac{dy}{dz} \right)^2 & \frac{dx}{dz}\frac{dy}{dz} & \frac{dx}{dz} \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \phi_x \\ \delta \phi_y \\ \delta \phi_z \end{pmatrix}$$

Chamber shift $+\delta y$

- **★** GEM recHit
- **★** Propagation position

$$\Delta R\phi = \delta x - x/R \cdot \delta y$$

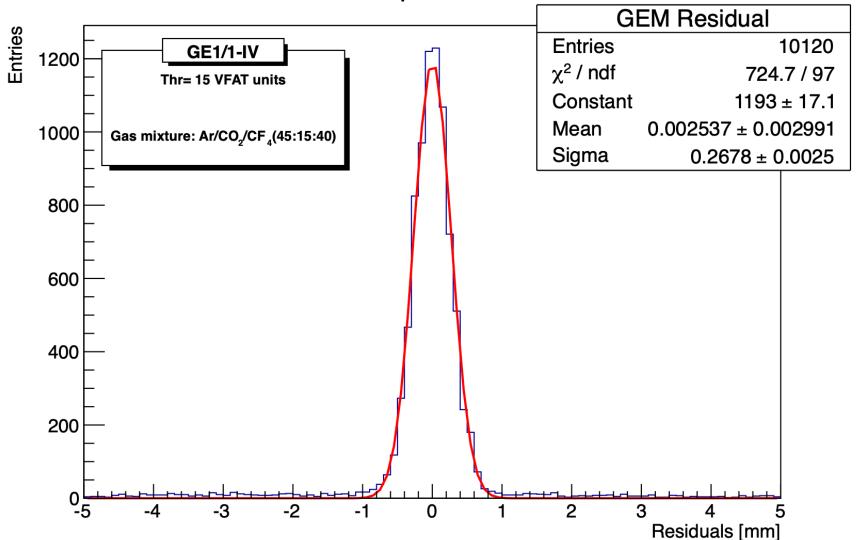
 δy contributes to $\Delta R\phi$ residual with coefficient -x/R (local x and global R of propagation position, x/R ~ 0.014).

Projection Matrix $\delta\phi_z$

$$\begin{pmatrix} \Delta(R\phi) \\ \Delta y_o \\ \Delta \frac{d(R\phi)}{dz} \\ \Delta \frac{dy}{dz_o} \end{pmatrix} = \begin{pmatrix} 1 & \left[-\frac{x}{R} + 3\left(\frac{x}{R}\right)^3 \right] & -\frac{dx}{dz} & -y\frac{dx}{dz} & x\frac{dx}{dz} & -y \\ 0 & 1 & -\frac{dy}{dz} & -y\frac{dy}{dz} & x\frac{dy}{dz} & x \\ 0 & -\frac{1}{2R}\frac{dx}{dz} & 0 & \left[\frac{x}{R} - \frac{dx}{dz}\frac{dy}{dz} \right] & 1 + \left(\frac{dx}{dz}\right)^2 & -\frac{dy}{dz} \\ 0 & 0 & 0 & -1 - \left(\frac{dy}{dz}\right)^2 & \frac{dx}{dz}\frac{dy}{dz} & \frac{dx}{dz} \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \phi_x \\ \delta \phi_y \\ \delta \phi_z \end{pmatrix}$$

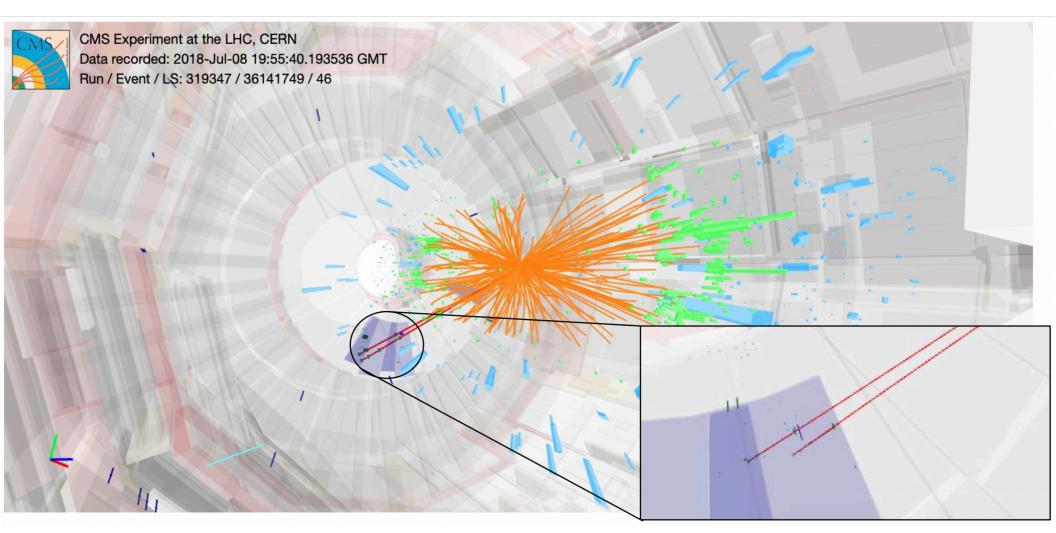
Chamber shift $+\delta\phi_{\scriptscriptstyle 7}$

- **★** GEM recHit
- **★** Propagation position



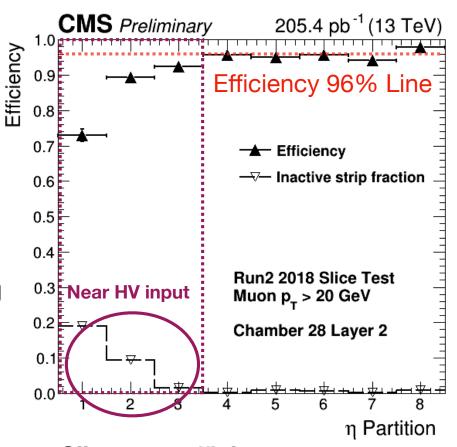
$$\Delta R\phi = \delta x - x/R \cdot \delta y - y \cdot \delta \phi_z$$

 $\delta\phi_z$ contributes to $\Delta R\phi$ residual with coefficient -y (local y position of the propagațion).



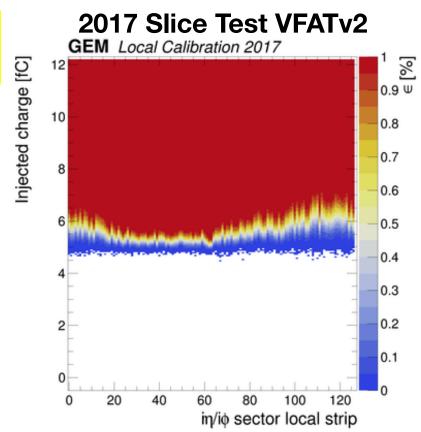
GE1/1-IV Spatial Resolution

Slice Test Event Display



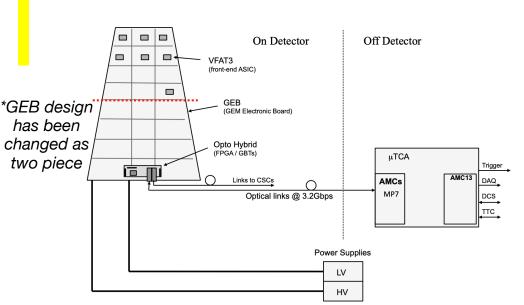
LHC Proton-proton collision event with muons from a reconstructed J/ψ candidate passing through one of the GE1/1 slice test super chambers

Slice Test


- During Run2, GEM performed operating demonstration
- 5 super chambers installed
 - Two detectors grouped into a super chamber
- GE1/1 Slice Test was an excellent learning opportunity
- Unforeseen technical and operational challenges occurred during the data taking
 - High electronic noise at GEB due to ground loop
 - Channel loss in VFAT
- Re-designed GEB after Slice Test
 - Added shield layer
 - Removed ground loop
- Added VFAT input protection to prevent channel loss

Slice Test efficiency measurement results by eta partition. Efficiency is strongly correlated with inactive strip fraction.

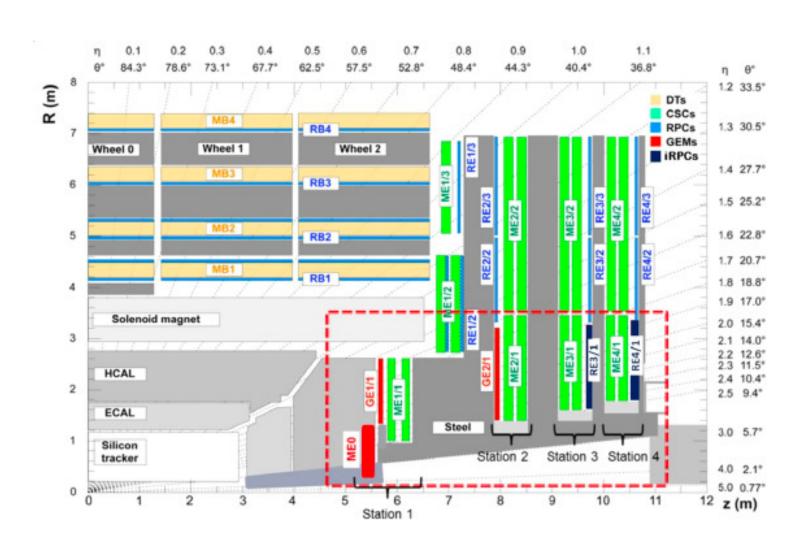
Calibration

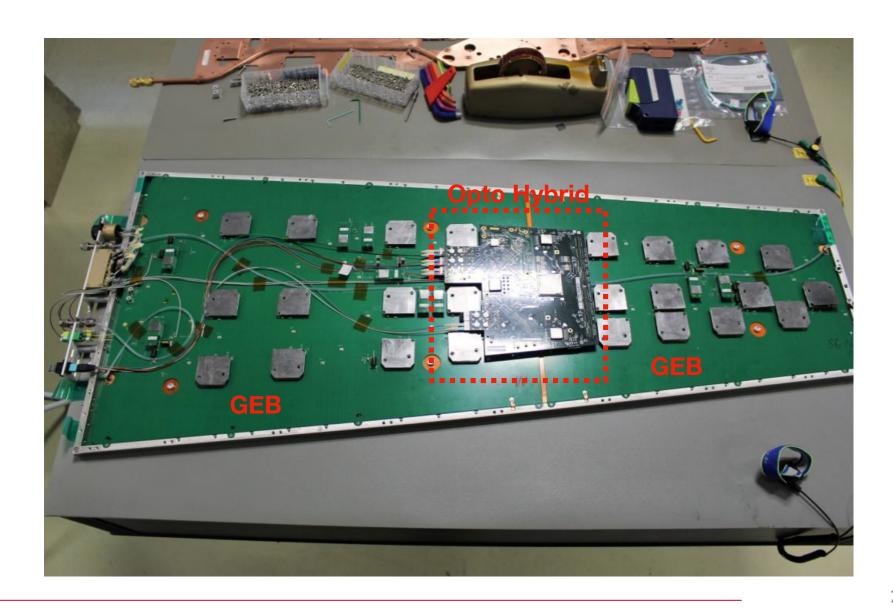


S-curves calibration is performed by sweeping injected charge and counting number of hits at constant comparator threshold

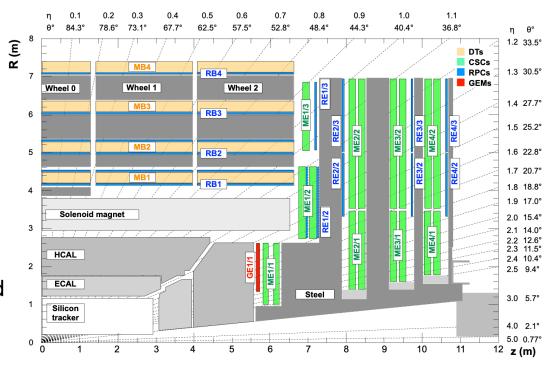
- Since digitized data comes from VFATs, RAW data has no charge or pedestal information
- GEM DAQ system can perform daily calibration scan
- Calibration results mask channels that are noisy or dead
- GEM hit reconstruction considers masked channel information to avoid splitting hits

CMS GEM Readout System


CMS-TDR-013 Fig. 3.1


- CMS GEM readout system is fully new electronics chain
- Front-end ASIC (VFAT) reads GEM detector strip charge and sends digitized data
- One VFAT has 128 channels
- One detector has 24 VFATs (8 eta partitions and 3 local phi)

- 128 channel chip
- Provide tracking and trigger information
- Trigger information: Minimum fixed latency with granularity of 2 channels
- Tracking information: Full granularity after Level-1 trigger accept (L1A).
- L1A capability: L1A latency beyond 12.5 μs
- Time resolution of less than 7.5 ns (with detector).
- Radiation resistant up to 100 MRads (radiation hardness of up to 1MRad is sufficient for the GE1/1 application through Phase-II)



What is CMS/GEM

- The CMS muon system plays an important role in the discovery of new physics like the Higgs boson and new particles.
- The next phase of the LHC is planned to improve the discovery power by increasing luminosity. The high luminosity LHC (HL-LHC) will be a harsh environment of pp collisions and will require high-performance muon trigger and muon track reconstruction, especially in the forward endcap region.
- In order to maintain the performance of the CMS muon system, the CMS collaboration has been developing a Gas Electron Multiplier (GEM) detector for the endcap regions of the CMS muon system.
- The new sub-detector system requires a new procedure of commissioning and alignment to be developed.

CMS-TDR-013 Fig. 1.1

GE1/1: GEM End-cap station1 ring1

Drift Tube chambers (DTs)
Cathode Strip Chambers (CSCs)
Resistive Plate Chambers (RPCs)

Commissioning

- Noise investigation
 - Reduce the noise to < 1 fC per chamber
 - Studies performed on chamber with high noise
 - Modifications made to connectors on LV cables
- Thresholds and HV working point optimization
 - Thresholds and HV working point to be determined iteratively
 - Efficiency measurements with reconstructed cosmic muons (CSC to GEM propagation)
- CMS endcap muon track finder (EMTF)
 - GEM-CSC trigger test