ProtoDUNE Physics and Results

Wenjie Wu (UCI), on behalf of the DUNE collaboration

APS DPF Meeting 2021

July 12, 2021

DUNE

See Jose Maneira's talk @ Plenary on 13 July

- DUNE: next generation neutrino experiment using LArTPC technology
 - New neutrino beam at Fermilab (1.2 MW, upgradeable to 2.4 MW), 1300 km baseline
 - 4 modules for Far Detector at Sanford Underground Research Facility, South Dakota, 1.5 km underground
 - Multiple technologies for the Near Detector (ND)
- $\nu_e/\bar{\nu}_e$ appearance and $\nu_\mu/\bar{\nu}_\mu$ disappearance \to Neutrino CP violating phase and mass ordering
- Large detector, deep underground, high intensity beam → Supernova burst neutrinos, atmospheric neutrinos, nucleon decay and other BSM, etc
- Excavation started in 2017, start Far Detector installation in the middle of 2020s

ProtoDUNEs at CERN

- ProtoDUNE-SP and DP are DUNE's large scale prototypes (~1 kton-scale) of its far detector modules at CERN Neutrino Platform
 - Use components identical in size to those of the fullscale module
 - Critical to demonstrate viability of LArTPC technology

NPO4 NPO2 ProtoDUNE-SP ProtoDUNE-DP H4 beamline H2 beamline

ProtoDUNE Dual Phase (DP)

- LArTPC 6 m vertical drift + charge amplification in gas Ar + photon detection
- Cosmic-muon data in 2019 2020

ProtoDUNE Single Phase (SP)

- LArTPC 3.6 m horizontal drift + photon detection
- Beam data taken in 2018 & cosmic data in 2018 2020
- ProtoDUNE-SP Phase II in 2022

ProtoDUNE-SP: Operating Principle

- Charged particles ionize argon atoms
- Ionized electrons drift horizontally opposite to the E field in the LAr and are collected on the anode wire planes (~ ms) → 2D spatial location
- Electron drift time projection → enable 3D spatial location
- Argon scintillation light (\sim ns) detected by photon detectors, providing event start time t_0
- Key factors: LAr purity and noise on the readout electronics

ProtoDUNE-SP at CERN Neutrino Platform

- Tertiary beam
- Spectrometer to measure the particle momenta
- Particle ID from time of flight and two Cerenkov detectors
- Over 4 million triggers over the momentum range 0.3 to 7.0 GeV (positrons, pions, muon, kaons and protons)

ProtoDUNE-SP Detector

- TPC
 - Two drift volumes, 3.6 m drift distance (2.25 ms) @ 500 V/cm
 - Cathode Plane Assembly (CPA) on middle plane
 - Anode Plane Assembies (APAs) on both sides
 - Cold electronics attached to the top of APAs
- Photon detectors (PDS)
 - SiPM readouts
 - Wavelength shifter converts VUV to visible light
 - 3 designs integrated into APA frame bars
- Cryogenic instrumentations: measure argon purity, temperature, liquid level and tag cosmic rays

ProtoDUNE-SP: Detector Calibration

- Individual effects are measured and corrected for
 - SCE (Space charge effect), attenuation, electronic gain, diffusion, recombination, etc
 - Detector response is uniform in space and over time after the corrections
- Absolute energy scale is determined using stopping muons

ProtoDUNE-SP: dE/dx Measurements

Good e/γ separation crucial for electron neutrino ID

- The calibration constants applied to test beam particles and yielded good data and MC agreements
 - Excellent μ^+/p separation: crucial for cross section measurements
 - Good e/γ separation: crucial for DUNE's neutrino oscillation measurements

ProtoDUNE-SP: LAr Purity

- Liquid Argon purity is routinely measured by three Purity Monitors
- High purity reached thanks to the gas/liquid recirculation & filtering
 - Lower limit of 30 ms lifetime over the majority of run period \rightarrow 7% signal reduction over the entire 3.6 m drift distance (2.25 ms drift time)

ProtoDUNE-SP: Detector stability

- TPC signal strength: The average charge per channel from cosmics
 - A monitor of overall detector response
 - Sensitive to amplifier/digitizer response, cathode voltage, LAr purity and other detector conditions
- Response has been stable over the 22 months of operation

ProtoDUNE-DP: Operating Principle

- Ionized electrons drift vertically upward in LAr
- Electrons are extracted from liquid into gas phase above the liquid
- Charge signal amplified and read out at the top
- PMTs detect scintillation light at the bottom
- Challenge: the overall design increases the possible drift length which requires a correspondingly higher voltage

ProtoDUNE-DP: Cosmic Ray Events

• Events with LEM ΔV of 31–32 kV (Oct. 2019)

Horizontal muon track

• Electromagnetic shower + 2 muon decays

Multiple hadronic interactions in a shower

Summary and Prospect

- The successful performance of ProtoDUNE-SP LArTPC using large samples of data from a test-beam run at the CERN Neutrino Platform demonstrates the effectiveness of the single-phase detector design and the execution of the fabrication, assembly, installation, commissioning, and operation
 - The data collected by ProtoDUNE-SP during beam runs and cosmic-ray runs will allow more detailed studies of detector characteristics and the measurement of argon-hadron cross sections
 - ProtoDUNE-SP Phase II, to improve detector with lesson learned from Phase I, is expected to start in late 2022
- ProtoDUNE-DP is the largest dual-phase TPC ever built and operated
 - Plenty of data to be analyzed and many interesting results to be share with a wider community interested in large LAr TPCs

Stay tuned!

Backup

SP: Beam electron energy reconstruction

Electron energy resolution is crucial for DUNE's oscillation measurements

$$E_{\nu_e} = E_e + E_{had}$$

- Two analyses to measure beam electron energy resolution
 - TPC charge information
 - Photon detector information with only one ARAPUCA bar

SP: Beam electron energy resolution

Photon Detector

$$\sigma_E/\langle E \rangle = \sqrt{a^2 + (b/\sqrt{E})^2 + (c/\langle E \rangle)^2}$$

- Good linearity seen in both analyses
- Constant term dominated by spread of beam momenta
- Noise term dominated by fluctuation in the energy loss upstream
- Stochastic term characterizes the intrinsic detector resolution
 - ~ 2% for TPC and 9.9% for PD
 - Better than the design requirements

SP: Electronic noise and S/N ratios

 Electronic noise level measured by pedestal ENC (equivalent noise charge) before noise filtering: Collection (X): 550 e-, Induction: 650 e-(DUNE goal < 1000 e-)

- Noise filter reduces both by ~ 100 e-
- Noise-filtered signal-to-noise ratio measured by cosmic muons: Collection: 48.7:1, Induction: 21.2:1

SP: Photon Detector Performance

- Good energy linearity for contained beam electrons in the detector
- Working on geometry, attenuation and efficiency corrections

DP: Operating Principle

- Homogeneous 0.5 kV/cm drift field (cathode + field cage)
- Extraction field ~ 2.5 kV/cm between grid and LEM bottom
- Amplification ~ 20 in LEMs holes
- Readout in two directions (3.125 mm pitch) by collection on anode via field between LEM top electrode and anode

DP: Charge Readout Plane gain measurement

- Measurements between Sept. 2019 and Jan. 2020 with cosmics
- Operating conditions: 1045 mbar and ~ 90 K
- CRP gain: $\epsilon_{\text{extraction}} \times \epsilon_{\text{LEMs,amplification}} \times \epsilon_{\text{Qcollection}}(E_{\text{induction}})$
- $\epsilon_{\rm extraction}$ estimated to be well above 90%

- Sept. → Nov: Reduction by at least a factor of 2 due to LEM charging up effects
- Nov. → Jan.: very small reduction, charging up completed
- Gain a factor of 2 lower than extrapolated from previous prototypes
- Discrepancy not yet understood, dedicated study to come

