LOUISIANA STATE UNIVERSITY

T2K Latest Results On Muon Neutrino And Anti-Neutrino Disappearance

SIVA PRASAD K

ON BEHALF OF T2K COLLABORATION APS DIVISION OF PARTICLES AND FIELDS OF THE AMERICAN PHYSICAL SOCIETY 12-14 JULY 2021

- The T2K Experiment
- Analysis Strategy
- Data Fit Results
- Summary and Outlook

Physics goals of this analysis include

 \mathbf{M} Measurement of θ_{23} , Δm_{32}^2

- Test the consistency of PMNS oscillation model
 - Potential inconsistencies could be attributed to CPT violation, non-standard interactions (NSI)

Siva Prasad K | T2K Latest Results on Muon Neutrino Disappearance Analysis | DPF 2021

The T2K Experiment

- A long-baseline accelerator based neutrino oscillation experiment.
- In T2K beam line, hadrons of either charge from the primary interactions (proton-on-carbon interaction) are focussed using magnetic horns by switching the horn current.
 - Focus positively charged hadrons produces neutrinos
 - Focus negatively charged hadrons produces anti-neutrinos
- T2K detectors can record data either in neutrino mode or antineutrino mode and this analysis takes advantage of such an ability.

More in <u>C Riccio</u> & <u>K Wood</u> talks

Super-K Detector

- % Off-axis at 2.5° angle, with 50 kilo ton pure water
- ℁ About 11k inner detector PMTs (20")
- Particle ID based on Cherenkov ring pattern, not charge based
 - Sharp ring muons
 - ℁ Fuzzy rings electrons
 - $\# \mu \rightarrow e \text{ mis-ID} \sim 1\%$

LSU T2K

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4\theta_{13} \cdot \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \cdot \sin^2 \theta_{23}) \cdot \sin^2 \frac{\Delta m_{32}^2 \cdot L}{4E}$$

 \ll An off-axis angle 2.5^o makes ν_{μ}

beam more narrow and peak around 0.6 GeV which allows us to observe maximum oscillation probability for a baseline of 295 km.

- Maximize signal and reduce high energy backgrounds.
- For $ν_{\mu}$ disappearance [™] depth of dip ~ sin²2θ₂₃ [™] location of dip ~ Δm_{32}^2

Data Accumulation to Date

LSU T2

This analysis is performed using this dataset for both ν -mode and $\bar{\nu}$ -mode.

Siva Prasad K | T2K Latest Results on Muon Neutrino Disappearance Analysis | DPF 2021

Motivation

- ** To test the consistency of PMNS oscillation model with data by comparing ν_{μ} and $\bar{\nu}_{\mu}$ disappearance.
 - ≫ Negligible matter effects on ν_{μ} survival probability at T2K baseline.
 - ** CPT violation, non-standard interactions (NSI) etc. may cause inconsistency between ν_{μ} and $\bar{\nu}_{\mu}$.

Motivation

- ** To test the consistency of PMNS oscillation model with data by comparing ν_{μ} and $\bar{\nu}_{\mu}$ disappearance.
 - ≫ Negligible matter effects on ν_{μ} survival probability at T2K baseline.
 - ≪ CPT violation, non-standard interactions (NSI) etc. may cause inconsistency between ν_{μ} and $\bar{\nu}_{\mu}$.
- We have the second s
- * Perform ν -disappearance analysis at Super-K detector using both neutrino mode and anti-neutrino mode μ -like samples.
- ≫ Joint fit between these two samples allowing ν_{μ} and $\bar{\nu}_{\mu}$ oscillations governed by separate PMNS oscillation parameters $(\sin^2 \theta_{23}, \Delta m_{32}^2) \neq (\sin^2 \bar{\theta}_{23}, \Delta \bar{m}_{32}^2)$.
- ≫ Joint fit allows us to constrain the wrong-sign background in neutrino and anti-neutrino μ -like sample.

- * Analysis strategy is to define a model that gives predictions at near and far detectors, and constrain it with either external experimental data or T2K data or both.

- * Analysis strategy is to define a model that gives predictions at near and far detectors, and constrain it with either external experimental data or T2K data or both.

- Analysis strategy is to define a model that gives predictions at near and far detectors, and constrain it with either external experimental data or T2K data or both.
 - * e.g. Flux model is constrained with both NA61/SHINE data and INGRID data.
- Near detector fit provides constraints on both flux and cross-section uncertainties (covariance matrix) which is used to get SK prediction.

- Analysis strategy is to define a model that gives predictions at near and far detectors, and constrain it with either external experimental data or T2K data or both.
 - * e.g. Flux model is constrained with both NA61/SHINE data and INGRID data.
- Near detector fit provides constraints on both flux and cross-section uncertainties (covariance matrix) which is used to get SK prediction.
- This analysis uses inputs from ND fit and then independently performs fits to SK data.

Neutrino Flux Model

 ∦ In the <u>previous analysis</u>, flux was tuned to NA61/SHINE thin target data.

 Flux uncertainty from 8% to 5%.

Neutrino Interaction Model

Charged Current Quasi-Elastic (CCQE) interaction

Charged Current Resonance (CCRES) interaction

multi-nucleon or 2p2h interaction

15

- Some highlights of cross-section systematics
 - Separate 2p2h normalization parameters for neutrino and antineutrino - independently varied.
 - Sinding energy is correlated between neutrino and anti-neutrino.
 - * Axial mass parameter (M_A^{QE}) is correlated neutrino and antineutrino. More in C Riccio's talk

Near Detector Fit

LSU T2

 ≫ Near detector (ND280) fit to data constrains both flux and cross-section systematics uncertainties - about twice as much data 1.15 (0.8) × 10²¹ POT in ν ($\bar{\nu}$) mode.

** Total of 18 samples based on number of reconstructed π 's, in FGD1/FGD2 and in neutrino/anti-neutrino mode . More in C Riccio's talk

		FGD1		FGD2			ν_{μ} CC0 π : No
u events in neutrino mode	CC0π	CC1 π	CCNπ	CC0 π	CC1 π	CCNπ	π^{μ} π^{ν} π^{μ} π^{ν} π^{μ}
$ar{ u}$ events in antineutrino mode	CC0π	$CC1\pi$	CCNπ	CC0 π	CC1 π	CCNπ	state
ν events in antineutrino mode	CC0 <i>π</i>	$CC1\pi$	CCNπ	СС0π	CC1π	CCN <i>π</i>	mostly CCQE

Near Detector Fit

 ≫ Near detector (ND280) fit to data constrains both flux and cross-section systematics uncertainties - about twice as much data 1.15 (0.8) × 10²¹ POT in ν ($\bar{\nu}$) mode.

- ND fit introduces anti-correlations between flux and cross-section uncertainties.
 Reduced uncertainties on event rates at SK.
- SK pre-fit uncertainty reduced
 - $\text{\% } \nu_{\mu} \text{ sample 11.1\% to 3.0\%.}$
 - $\bar{\nu}_{\mu} \text{ sample 11.3\% to 4.0\% }$

LSU T2

SK Event Spectra

LSU

- * Predicted and observed spectra of samples with μ -like rings (left ν mode, right $\overline{\nu}$ mode) at SK detector. Clearly, a visible dip around 0.6 GeV in the ratio plot with un-oscillated spectra due to oscillations.
- Error band (1*σ*) is the post-SK fit systematic uncertainty (on rate, 3% ν mode, 4% $\overline{\nu}$ mode).

- There have been studies [JPhysG 44 054001] shows that long-baseline experiments may be biased by the cross-section model choices.
- Simulated data studies are used to test the robustness of T2K analysis against model dependent assumptions.
- These studies are used to evaluate the bias in the oscillation parameters by varying the nominal cross-section models.

e.g. alternative 2p2h models, external data-driven tunes.

- Simulated data sets are created by applying weights to events in the nominal Monte Carlo sample both at ND280 and SK detector.
 - Weights are calculated as the ratio between altered interaction model and nominal cross-section model.

Simulated Data Robustness Studies

- Fits to simulated data sets are performed both at ND280 and SK detector, and produce the likelihood contours for oscillation parameters at SK.
- Likelihood contours from nominal MC and simulated data are then compared to estimate the bias.
 - Solution Bias is an estimate of difference in the centers of 1σ intervals for Δm_{32}^2 contours and divided by 1σ interval from nominal fit.

Simulated Data Robustness Studies

- An example of showing results from SK fits to alternative cross-section model for 2p2h events. A very different 2p2h neutrino vs anti-neutrino behavior of the two models.
 - Nominal <u>Nieves et.al</u>
 - Altered Martini et.al

LSU

- Fits to several other simulated data sets were performed as well.
- Solution No significant biases seen on θ_{23} ($\bar{\theta}_{23}$) and Δm_{32}^2 ($\Delta \bar{m}_{32}^2$) from any of the alternative models
 - Seen small bias on $\Delta m_{32}^2 \ (\Delta \bar{m}_{32}^2)$ which is accounted by adding an error of 0.57 (1.232) × $10^{-5} \text{ eV}^2/\text{c}^4$ in quadrature to the total post-fit uncertainty on $\Delta m_{32}^2 \ (\Delta \bar{m}_{32}^2)$

- * Fit to Δm_{32}^2 and $\sin^2 \theta_{23}$ while marginalizing over $\bar{\theta}_{23}$, $\Delta \bar{m}_{32}^2$ and other parameters and vice versa.
- Improved constraints from the previous analysis due to an additional POT in the neutrino mode and analysis improvements (e.g. improved crosssection models).
- ℁ Best-fit values
 - $(\sin^2 \theta_{23}, \Delta m_{32}^2) = (0.47, 2.48 \times 10^{-5})$ $(\sin^2 \bar{\theta}_{23}, \Delta \bar{m}_{32}^2) = (0.45, 2.52 \times 10^{-5})$

LSU

** Not sensitive to θ_{23} octant (leading order term ~ $\sin^2 2\theta_{23}$) as the lower octant and upper octant solutions have very similar likelihood in the joint fit with only μ -like samples.

Summary

- Improvements in this analysis
 - Solution About twice the POT at Near Detector in both neutrino and antineutrino mode

 - ℅ Flux tuning with NA61/SHINE T2K replica target data
 - Significant improvement in the systematic uncertainties due to updated cross-section models
- * Improved constraints on Δm_{32}^2 and $\sin^2 \theta_{23}$ from the <u>previous analysis</u>.
- Results in agreement with standard 3-flavor framework no indication for new physics.
- ❀ Stay Tuned For More Exciting Results From T2K Experiment.

THANK YOU

T2K Collaboration

Near Detectors

- On-axis detector
- Modular design with iron plates and scintillator trackers
- Precision of on-axis beam direction
 << 1 mrad</p>

- % Off-axis detector at 2.5°
- **Sub-detectors** Time Projection Chambers (TPC), Fine Grained Detectors (FGD), π^0 Detector

Flux Prediction

Figure 58: The tuned flux combined for Runs 1-10b (top) and 5c-9d (bottom), at ND280 (left) and at Super-Kamiokande (right). All species of neutrinos are shown. Only statistical error bars are shown.

LSU T2

PhysRevD.96.092006

FIG. 4. Multinucleon interactions (2p2h) cross section on 12 C as a function of energy from the models of Nieves (reference model in the text) [40] and Martini (alternative model in the text) [70].

Near Detector Fit

LSU T2

- * Near detector (ND280) fit to data constrains both flux and cross-section systematics uncertainties.
- No correlations before ND fit, but (anti) correlations after the ND fit between flux and cross-section systematic uncertainties.

Final The marginal likelihood is given as

$$\mathcal{L}_{marg}(N_e^{obs.}, N_{\mu}^{obs.}, \boldsymbol{x}_e, \boldsymbol{x}_{\mu}, \boldsymbol{o}) = \int \mathcal{L}(N_e^{obs.}, N_{\mu}^{obs.}, \boldsymbol{x}_e, \boldsymbol{x}_{\mu}, \boldsymbol{o}, f) \mathrm{d}f.$$

$$\mathcal{L}(N_e^{obs.}, N_{\mu}^{obs.}, \boldsymbol{x}_e, \boldsymbol{x}_\mu, \boldsymbol{o}, f) = \mathcal{L}_e(N_e^{obs.}, \boldsymbol{x}_e, \boldsymbol{o}, f) \times \mathcal{L}_{\mu}(N_{\mu}^{obs.}, \boldsymbol{x}_\mu, \boldsymbol{o}, f) \times \mathcal{L}_{syst.}(f)$$

where

x - measurement variable like
$$E_{rec}$$
, p and θ ,

- o oscillation parameters,
- f systematic parameters,
- L_{syst} likelihood term for systematic uncertainties

31

$$\mathcal{L}_{\text{syst}} = \exp(-0.5\sum_{i,j} v M_{ij} v_j)$$

Use importance sampling for the numerical integration of marginal likelihood

$$\mathcal{L}_{marg}(N_e^{obs.}, N_{\mu}^{obs.}, \boldsymbol{x}_e, \boldsymbol{x}_{\mu}, o) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_e(N_e^{obs.}, \boldsymbol{x}_e, o, f_i) \times \mathcal{L}_{\mu}(N_{\mu}^{obs.}, \boldsymbol{x}_{\mu}, o, f_i),$$

where N is the number of throws based on the prior distribution for systematic parameters, f.

Sensitivity To ν_{μ} And $\bar{\nu}_{\mu}$ Disappearance

- * Fit to Δm_{32}^2 and $\sin^2 \theta_{23}$ while marginalizing $\bar{\theta}_{23}$, $\Delta \bar{m}_{32}^2$ and other parameters.
- Fit to $\Delta \bar{m}_{32}^2$ and sin² $\bar{\theta}_{23}$ while marginalizing θ_{23} , Δm_{32}^2 and other parameters.
- ≫ Not sensitive to $θ_{23}$ octant due to lack of electron-like samples.
- Improved sensitivities from the previous analysis due to an additional POT in the neutrino mode (33% more) and analysis improvements (e.g. new cross-section models).

$$\begin{split} \Delta m^2_{21} &= 7.53 \times 10^{-5} \text{ eV}^2, \\ \Delta m^2_{32} &= 2.509 \times 10^{-3} \text{ eV}^2, \sin^2\theta_{23} = 0.528, \\ \sin^2\theta_{12} &= 0.307, \sin^2\theta_{13} = 0.0218, \delta_{cp} = -1.601 \end{split}$$

Sensitivity

LSU

$$\begin{split} \Delta m^2_{21} &= 7.53 \times 10^{-5} \text{ eV}^2, \\ \Delta m^2_{32} &= 2.509 \times 10^{-3} \text{ eV}^2, \sin^2\theta_{23} = 0.45, \\ \sin^2\theta_{12} &= 0.307, \sin^2\theta_{13} = 0.0218, \delta_{cp} = 0 \end{split}$$

Showing $(\sin^2\theta_{23}, \Delta m_{32}^2)$ sensitivity on left and $(\sin^2\bar{\theta}_{23}, \Delta \bar{m}_{32}^2)$ on right with **Run 1-10** POT.

LS

- Showing $(\sin^2\theta_{23}, \Delta m_{32}^2)$ sensitivity on left and $(\sin^2\bar{\theta}_{23}, \Delta \bar{m}_{32}^2)$ on right for **Run 1-10** data with smearing applied.
- Smearing has negligible effect on contours and the best-fit.

Predicted Event Rates

	-	-					
Event Type	$ u_{\mu} ightarrow u_{\mu}$	$\nu_e ightarrow \nu_e$	$\bar{ u}_{\mu} ightarrow \bar{ u}_{\mu}$	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	$ u_{\mu} ightarrow u_{e}$	$\bar{ u}_{\mu} ightarrow \bar{ u}_{e}$	Total
CC_QE	224.4	0.00433	13.95	0.0003419	0.0352	0.0002102	238.4
CC MEC	39.01	0.001806	2.095	3.315e-05	0.01311	4.345e-05	41.12
\overline{CC} 1PI	42.53	0.003503	3.678	0.0001257	0.04575	4.578e-05	46.26
CC COH	0.3088	0	0.07071	2.593e-05	0	1.28e-05	0.3796
CC DIS	0.83	0	0.04415	0	0	0	0.8741
CC MPI	7.629	0.001044	0.4421	4.111e-05	0.00218	0	8.075
CC MISC	1.211	0	0.07409	0	0	0	1.285
NC 1PI0	0.5152	0.01595	0.01909	0.001519	0	0	0.5517
NC ¹ PIC	5.324	0.1152	0.1971	0.01098	0	0	5.647
NC ^{COH}	0	0.0004912	0	0	0	0	0.0004912
NC ^{GAM}	0.0092	0	0	0	0	0	0.0092
NC OTHER	2.402	0.09885	0.1345	0.01007	0	0	2.646
Subtotal	324.2	0.2412	20.71	0.02313	0.09624	0.0003122	345.3

Event Type	$ u_{\mu} ightarrow u_{\mu}$	$\nu_e \rightarrow \nu_e$	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	$ u_{\mu} \rightarrow \nu_{e} $	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	Total
CC QE	34.03	0.001462	59.32	0.001888	0.0003753	0.003054	93.36
CCMEC	7.751	0.0004212	7.075	0.0002513	0.0006926	0.0003011	14.83
\overline{CC} 1PI	9.999	0.0004752	10.03	0.0003229	0.0007675	0.000186	20.03
CC COH	0.06299	0	0.2153	0	0	0.0001855	0.2784
CC DIS	0.1364	0	0.1121	0	0	0	0.2486
CC MPI	1.994	0.0001368	1.043	7.814e-05	6.994e-05	0.0001705	3.037
CC MISC	0.3569	0	0.1713	0.0001327	0	0	0.5284
NC 1PI0	0.07759	0.00348	0.07529	0.001473	0	0	0.1578
NC ¹ PIC	0.6823	0.02619	0.9445	0.02219	0	0	1.675
NC ^{COH}	0.0006056	0	0	0	0	0	0.0006056
NC ^{GAM}	0	0	0	0	0	0	0
NC_OTHER	0.625	0.02542	0.3478	0.01391	0	0	1.012
Subtotal	55.72	0.05759	79.33	0.04025	0.001905	0.003897	135.2

Predicted number of events at SK with the ND post-fit constraints broken down by interaction mode and oscillation channel.

 u_{μ}

Evolution Of Constraints

- B 2020 analysis. Used 2020 BANFF constraints, but used PDG 2018 reactor constraint, and run 1-9d POT
- % C Same as B, but used PDG 2019 reactor constraint
- D Same as C, but using SK reprocessed data

Data Fit Results

LSU T2

Comparison of constraints between the previous analysis and the current analysis.

Oscillated Event Spectra At SK

- Socillated event rate spectra in reconstructed energy for different true interaction modes.
- % Parameter values:

LSU T2/

$$\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2, \ \Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2, \ \sin^2 \theta_{23} = 0.528, \\ \sin^2 \theta_{12} = 0.307, \ \sin^2 \theta_{13} = 0.0218, \ \delta_{cp} = -1.601$$

Siva Prasad K | T2K Latest Results on Muon Neutrino Disappearance Analysis | DPF 2021

Effect Of Systematics On Event Spectra At SK

- Socillated event rate spectra in reconstructed energy before and after applying ND constraints.
- % Parameter values:

LSU T2

$$\sum \Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2, \ \Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2, \ \sin^2 \theta_{23} = 0.528, \\ \sin^2 \theta_{12} = 0.307, \ \sin^2 \theta_{13} = 0.0218, \ \delta_{cp} = -1.601$$

SYSTEMATIC SUMMARY

LSU T2

Pre-fit	Post-fit
	Error source (units: %) $\ FHC RHC \ $
	Flux 2.9 2.8 Xsec (ND constr) 3.1 3.0
Error source (units: %) $1R\mu$ FHC RHC Flux 5.1 4.7 10.1 Cross-section (all) 10.1 10.1	Flux+Xsec (ND constr) 2.1 2.3 2p2h Edep 0.4 0.4 BG_A^{RES} low- p_{π} 0.4 2.5 $\sigma(\nu_e), \sigma(\bar{\nu}_e)$ 0.0 0.0
SK+SI+PN \parallel 2.9 2.5 Total \parallel 11.1 11.3	$\begin{array}{c c} {\rm NC} \ \gamma & & & 0.0 & 0.0 \\ {\rm NC} \ {\rm Other} & & 0.2 & 0.2 \\ {\rm SK+SI+PN} & & 2.1 & 1.9 \end{array}$
	Total 3.0 4.0

Which we wanted the second second

