The Future of Neutrino Telescopes: **Neutrino Sources and New Physics**

Ningqiang Song

with Shirley Li, Carlos Argüelles, Mauricio Bustamante, Aaron Vincent

Queen's University, McDonal Institute, Perimeter Institute July 13, 2021

Code available at https://github.com/songningqiang/FANFIC

DPF 2021

High Energy Astrophysical Neutrinos

• Pion decay ($\nu_e : \nu_\mu : \nu_\tau$) = (1 : 2 : 0)

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\mu^{+} \rightarrow e^{+} + \nu_{\mu} + \bar{\nu}_{e}$$

• Muon-damped ($\nu_e : \nu_\mu : \nu_\tau$) = (0 : 1 : 0) $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\mu^{\not} \to e^+ + \nu_{\mu} + \bar{\nu}_e$ • Neutron decay ($\nu_e : \nu_\mu : \nu_\tau$) = (1 : 0 : 0)

$$n \to p + e^- + \bar{\nu}_e$$

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

DPF 2021

Ve, Vp. Vr

Cosmological distance

Argüelles et al, 1907.08690

Neutrino Flavor at Earth

Neutrinos oscillate from source to Earth

$$P_{\alpha\beta}^{s \to \bigoplus} = \sum_{ij} U_{\beta i} U_{\beta j}^* U_{\alpha j} U_{\alpha i}^* \exp(-i\frac{\Delta m_{ij}^2 L}{2E})$$
$$= \sum_i |U_{\alpha i}|^2 |U_{\beta i}|^2$$

Source Discrimination?

- Limitations
 - Statistical: flux measurement lacksquare
 - Systematical: precise oscillation parameters

Parameter	Normal ordering	Inverted ordering
$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.304\substack{+0.013\\-0.012}$
$\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.575\substack{+0.016\\-0.019}$
$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02238\substack{+0.00063\\-0.00062}$
$\delta_{ m CP}$ (°)	197^{+27}_{-24}	$282\substack{+26 \\ -30}$

NuFit 5.0 global fit, Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, 2007.14792

Hard!

4

Future Neutrino Telescopes

DPF 2021

Neutrino Flavor Measurements: Future

DPF 2021

DUNE, Hyper-K

DPF 2021

Source Discrimination?

Pion decay well separated

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

NS, Li, Argüelles, Bustamante, Vincent, JHEP/2012.12893

Flavor Composition at Source

- Assume no ν_{τ} at source $f_{\tau,S} = 0$
- Combine the information from neutrino oscillation experiments and neutrino telescopes

$$\mathcal{P}(f_{e,S}) = \int d\boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \mathcal{L}_{exp}(\boldsymbol{f}_{\oplus}(f_{e,S},\boldsymbol{\theta})) \pi(f_{e,S})$$

uniform prior

See 1404.0017, 1502.02649, 1605.01556, 1901.10087 for source inference

Flavor Composition at Source

- k_{π} : pion decay fraction (1:2:0)
- k_{μ} : muon-damped fraction (0 : 1 : 0)
- k_n : neutron decay faction (1:0:0)

$$\mathcal{P}(\boldsymbol{k}) = \int d\boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \mathcal{L}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\oplus}(\boldsymbol{k}), \boldsymbol{\theta})) \pi(\boldsymbol{k})$$

$100\% \mu$ damped

NS, Li, Argüelles, Bustamante, Vincent, JHEP/2012.12893

- Assume ν_2 , ν_3 decay invisibly, ν_1 stable
- Assume pion decay at source $(f_e: f_\mu: f_\tau)_{\rm S} = (1/3, 2/3, 0)$
- Sum up neutrinos sources at different redshifts

$$D_{i} = \frac{N_{i}(E,0)}{N_{i}(E,z)} = Z(z)^{-\frac{m_{i}}{\tau_{i}}\frac{1}{H_{0}E}}$$

 ν telescopes \otimes oscillation experiments

11

 $m_{\nu}/\tau_{\nu} ~({\rm eV~s})$

Large Extra Dimensions

 $M_{pl}^2 \sim M_{\star}^{2+n} R^n$

Mack, **NS**, Vincent, JHEP/1912.06656

12

Summary

Code available at https://github.com/songninggiang/FANFIC

- More precise mixing parameters: JUNO, DUNE, HK...
- Better flavor ratio measurement: IceCube-Gen2, P-ONE, KM3NeT, GVD, TAMBO...
- Pin down the production mechanism at source, robust against non-unitarity Constrain neutrino decay and neutrino lifetime

To do:

- Energy spectral analysis

DPF 2021

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

• More new physics: leptoquarks, Z', microscopic BHs, long-lived particles

Backup Slides

Leptonic Non-unitarity

Source determination is robust against non-unitarity

Assuming non-unitarity

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \cdots \\ U_{\tau} & U_{\tau 2} & U_{\tau 3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Oscillation probability

$$P_{\alpha\beta}^{\mathrm{NU}} = \frac{1}{N_{\alpha}N_{\beta}} \sum_{i=1}^{3} |U_{\alpha i}|^{2} |U_{\beta i}|^{2}$$
$$N_{\alpha} \equiv \sum_{i=1}^{3} |U_{\alpha i}|^{2}$$

DPF 2021

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

Astrophysical Neutrino Measurements

• HESE data + through-going muons

IceCube Collaboration, 1507.03991

DPF 2021

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

First detection of tau neutrino double bangs

 $\Phi \propto E^{-\gamma}$ $\gamma_{\rm astro} = 2.87^{+0.20}_{-0.19}$

Fraction of $\nu_{\rm e}$ IceCube Collaboration, 2011.03561

New Physics: Neutrino Decay

- Neutrino decay is model dependent and mass-ordering dependent
- With decay

$$f_{\beta, \bigoplus} = \sum_{i=1}^{3} |U_{\beta i}|^2 f_{i, \bigoplus}$$

See 1506.02645, 2005.07200 for similar decay studies See 1506.02043, 1506.02645 for other new physics

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

Standard Oscillation

DPF 2021

Neutrino Decay

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

- Assume ν_2 , ν_3 decay invisibly, ν_1 stable
- Assume pion decay at source $(f_e: f_\mu: f_\tau)_{\rm S} = (1/3, 2/3, 0)$
- Sum up neutrinos sources at different redshifts

$$D_{i} = \frac{N_{i}(E,0)}{N_{i}(E,z)} = Z(z)^{-\frac{m_{i}}{\tau_{i}}\frac{1}{H_{0}E}}$$

See 1208.4600, 1610.02096 for details

DPF 2021

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

DPF 2021

21

Astrophysical Neutrino Flux

$$\frac{d\Phi_{6\nu}}{dE} = \Phi_{\text{astro}} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma_{\text{astro}}} \cdot 10^{-18} \text{ GeV}^{-1} \text{cm}^{-1}$$

 $\gamma_{astro} = 2.87^{+0.20}_{-0.19}$ HESE 7.5 years

IceCube Collaboration, 2011.03545

Where We Are

- Solar neutrinos + atmospheric neutrinos + reactor neutrinos + accelerator neutrinos
- $\sin^2 \theta_{12}$ and $\sin^2 \theta_{23}$ within 4%, $\sin^2 \theta_{13}$ within 3%
- $\delta_{\rm CP}$ and mass ordering less constrained

IceCube Collaboration, 2011.03561

DPF 2021

NuFIT 5.0 (2020)

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.7)$	
without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 heta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$
	$ heta_{12}/^\circ$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
	$\sin^2 heta_{23}$	$0.570\substack{+0.018\\-0.024}$	0.407 ightarrow 0.618	$0.575\substack{+0.017\\-0.021}$	0.411 ightarrow 0.621
	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$
	$\sin^2 heta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \to 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \to 0.02436$
	$ heta_{13}/^{\circ}$	$8.57\substack{+0.13 \\ -0.12}$	$8.20 \rightarrow 8.97$	$8.61\substack{+0.12 \\ -0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$
	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$
		Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.1)$
		Normal Ord bfp $\pm 1\sigma$	lering (best fit) 3σ range	Inverted Orde bfp $\pm 1\sigma$	ering $(\Delta \chi^2 = 7.1)$ 3σ range
	$\sin^2 heta_{12}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$	$\begin{array}{c} \text{lering (best fit)} \\ & 3\sigma \text{ range} \\ \\ & 0.269 \rightarrow 0.343 \end{array}$	Inverted Orde $bfp \pm 1\sigma$ $0.304^{+0.013}_{-0.012}$	ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$
lata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$
ric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$	$\begin{array}{l} \text{lering (best fit)} \\ & 3\sigma \text{ range} \\ \\ & 0.269 \rightarrow 0.343 \\ & 31.27 \rightarrow 35.86 \\ \\ & 0.415 \rightarrow 0.616 \end{array}$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$	$\frac{1}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$
tmospheric data	$ \frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}} \\ \frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}} \\ \frac{\sin^2 \theta_{13}}{\theta_{13}} $	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$	$\frac{1}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$
SK atmospheric data		Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$ $8.57^{+0.12}_{-0.12}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$	$\frac{1}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$
with SK atmospheric data		Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$ $8.57^{+0.12}_{-0.12}$ 197^{+27}_{-24}	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$ $120 \rightarrow 369$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$ 282^{+26}_{-30}	$\frac{2}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$ $193 \rightarrow 352$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\frac{\delta_{\rm CP}/^{\circ}}{\delta_{\rm CP}/^{\circ}}$	Normal Ord bfp $\pm 1\sigma$ $0.304^{+0.012}_{-0.012}$ $33.44^{+0.77}_{-0.74}$ $0.573^{+0.016}_{-0.020}$ $49.2^{+0.9}_{-1.2}$ $0.02219^{+0.00062}_{-0.00063}$ $8.57^{+0.12}_{-0.12}$ 197^{+27}_{-24} $7.42^{+0.21}_{-0.20}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$ $120 \rightarrow 369$ $6.82 \rightarrow 8.04$	Inverted Order bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$ $49.3^{+0.9}_{-1.1}$ $0.02238^{+0.00063}_{-0.00062}$ $8.60^{+0.12}_{-0.12}$ 282^{+26}_{-30} $7.42^{+0.21}_{-0.20}$	$\frac{2}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$ $193 \rightarrow 352$ $6.82 \rightarrow 8.04$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, 2007.14792

DPF 2021

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

NS, Li, Argüelles, Bustamante, Vincent, 2012.xxxxx

Flavor Composition at Source

- Neutron decay very subdominant
- Assume $k_n = 0$

$$\mathcal{P}(k_{\pi}) = \int d\boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \mathcal{L}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}}(k_{\pi}), \boldsymbol{\theta})) \pi(k_{\pi})$$

Pion decay determined within 20% by 2040

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

