Analysis of $t\bar{t}H$ and $t\bar{t}W$ production in multilepton final state with the ATLAS detector.

Rohin Narayan for ATLAS collaboration

Southern Methodist University, Dallas

ATLAS-CONF-2019-045

Why do we measure $t\bar{t}H$?

- Top quarks: Large Yukawa coupling to Higgs (yt)
- ttH/tH production cross-section measurement is the only direct way to measure y_t

Are we in a stable universe?

 Measured Higgs boson and Top quark masses suggest we are close to the metastability region.

- Assuming Standard model is true up to GUT scale:
 - top Yukawa coupling sensitive to additional minima in the effective Higgs potential.

arXiv:1205.6497v2arXiv:1411.1923v2

R . Narayan

Why do we measure $t\bar{t}W$?

arxiv:1406.3262

- At LO $t \bar{t} W$ is a $q \bar{q}'$ initiated process with a W^\pm emitted from the initial state.
- $qar{q}'$ initial state results in an asymmetry
 - As high as 12% in leptons from top quark legs
- Emission of W results in highly polarized $t\bar{t}$ system.
- Sensitive to physics beyond standard model
 - Eg: Axigluons
- Background to measurements with multiple leptonic signature.

Multilepton measurement for $t\bar{t}H$

• $t\bar{t}W$ is an irreducible background in $t\bar{t}H$ multileptons analysis.

Analysis strategy

- Events categorized based on number of light leptons and hadronic taus ($\tau \to \text{had}$)
- Common jet selection $N_{\text{jet}} \ge 2$ and $N_{\text{bjet}} \ge 1$

Higgs decay modes in sub channels

- Leptons ordered in p_T in $2\mathscr{C}SS0\tau$ channel
- In $3l0\tau$ channel: 1 opposite sign and 2 same sign lepton

Backgrounds

- Irreducible background from prompt-leptons and hadronic taus
 - Mainly $t\bar{t}W$, $t\bar{t}Z$, VV: Estimated using Montecarlo.
- Non-prompt lepton backgrounds:

Data-driven and semi data-driven techniques to estimate fakes.

$t \bar{t} W$ Modeling

- There are two known cross section corrections which were not available in any MC generators.
 - QCD corrections: [1405.0301]
 - qg initiated $t\bar{t}Wj$ diagrams have only LO accuracy
 - Correction factor 1.11

- t-channel higgs diagrams are missing in the calculations
- Correction factor 1.09

- Total of **1.2** k-factor applied for $t\bar{t}W$
 - Updated $t\bar{t}W$ cross-section [601 ± 76 fb $\longrightarrow 727 \pm 92$ fb]

$t \bar{t} W$ Modeling

Normalization factors

- 3 $t\bar{t}W$ normalization factors (across jet multiplicities and channels)
 - $\lambda_{t\bar{t}W}^{2\ell LJ}$ in $2\ell SS0\tau$ channel 2-3 jets regions
 - $\lambda_{t\bar{t}W}^{2\ell HJ}$ in $2\ell SS0\tau$ channel 4 jets and beyond
 - $\lambda_{t\bar{t}W}^{3\ell}$ in $3\ell 0\tau$ channel

These factors are determined by the fit

Fit Model

In total 17 control regions + 8 signal regions.

Fit Results:

$t\bar{t}H$ signal regions

Total Charge & $N_{b-{ m jets}}$

- Pre-fit mis-modeling in $t\bar{t}W$ dominated signal regions
- Mis-modeling depends on
 - Total charge
 - Number of b-tag jets.

Fit Results:

 $t \bar{t} W$ norm. factor: 3ℓ channel Jet energy scale: η intercalib. NP I $t \bar{t} Z$ cross section: scale variations $t \bar{t} W$ modelling: scale variations $t \bar{t} W$ norm. factor: $2\ell SS$ channel, 2-3 jets Fake $\tau_{\rm had}$ bkg. stat: $1\ell 2\tau$ channel $t \bar{t} H$ cross section: scale variations Jet energy scale: pileup $t \bar{t} W$ modelling: charge extrapolation $t \bar{t} W$ norm. factor: $2\ell SS$ channel, ≥ 4 jets Top rare decay cross-section Jet energy scale: flavour response $t \bar{t} H$ modelling: parton shower $t \bar{t} W$ modelling: alternative generator 4-top cross section

- Leading experimental systematics jet energy scale and resolution
- $t\bar{t}H$ Cross-section 294^{+182}_{-162} fb
- $t\bar{t}W$ normalization factors are high

Region	$\lambda_{tar{t}W}$	
2ISS (2-3 jets)	$1.56^{+0.30}_{-0.28}$	
2ISS(>= 4jets)	$1.26_{0.18}^{+0.19}$	
31	$1.68^{+0.30}_{-0.28}$	

Conclusion

- A measurement for $t \bar{t} H$ production in six multi lepton final states using $80 \, fb^{-1}$ data has been presented
- Observed production cross-section is 294^{+182}_{-162} fb consistent with the standard model prediction of 507^{+35}_{-50} fb.
- Fit to data prefers $t\bar{t}W$ background scaled between 1.3 and 1.7 wrt to standard model.
- Improved description of $t\bar{t}W$ process is needed to reach greater precision in $t\bar{t}H$ multileptons analysis

Backup

Analysis: Event and object selection

- Events are required to pass di-lepton trigger or single lepton trigger.
- Jets are reconstructed using anti-kT algorithm (R=0.4)
 - $p_T > 25$ GeV, $|\eta| \le 2.5$
- B-tagged jets are identified using a BDT algorithm(uses calorimeter and tracking information)
- Light leptons (e, μ) : At least 15 GeV p_T , $|\eta| \le 2.5$, ("Crack removal" for electrons)
- τ_{had} reconstructed using calo and tracking information.
 - Identification enriched using a BDT algorithm
 - $p_T > 25 \text{ GeV } |\eta| \le 2.5$

Fit: Modeling of Non-prompt leptons

- Checking flavor dependance of nonprompt lepton modeling.
- Pre-fit mis-modeling is not related to nonprompt mis-modeling.

- Checking $t\bar{t}$ vs $t\bar{t}W$ BDT from $2lSS0\tau$ channel.
- No mis-modeling observed in $t\bar{t}$ enriched Non-prompt lepton dominated regions

Cross-checks

Cut & Count

Fit Model

$t \overline{t} W$ Model

Process	Generator	ME order	Parton shower	PDF	Tune
tīH	Powнед-ВОХ [23, 24]	NLO	Рутніа 8	NNPDF3.0 NLO [25]/	A14
				NNPDF2.3 LO [48]	
	(Powheg-BOX)	(NLO)	(Herwig7)	(NNPDF3.0 NLO/	(H7-UE-MMHT)
				MMHT2014 LO [49])	
tHqb	MG5_AMC	LO	Рутніа 8	CT10 [50]	A14
tHW	MG5_AMC	NLO	Herwig++	CT10/	UE-EE-5
				CTEQ6L1 [51, 52]	
$tar{t}W$	Sherpa 2.2.1	MePs@Nlo	SHERPA	NNPDF3.0 NNLO	Sherpa default
	(MG5_AMC)	(NLO)	(Pythia 8)	(NNPDF3.0 NLO/	(A14)
				NNPDF2.3 LO)	
$tar{t}(Z/\gamma^*)$	MG5_AMC	NLO	Рутніа 8	NNPDF3.0 NLO/	A14
				NNPDF2.3 LO	
	(SHERPA 2.2.0)	(LO multileg)	(SHERPA)	(NNPDF3.0 NLO)	(SHERPA default)
$t\bar{t} \rightarrow W^+bW^-\bar{b}l^+l^-$	MG5_AMC	LO	Рутніа 8	NNPDF3.0 LO	A14
tZ	MG5_AMC	LO	Рутніа 6	CTEQ6L1	Perugia2012
tWZ	MG5_AMC	NLO	Рутніа 8	NNPDF2.3 LO	A14
$t\bar{t}t,t\bar{t}t\bar{t}$	MG5_AMC	LO	Рутніа 8	NNPDF2.3 LO	A14
$t\bar{t}W^+W^-$	MG5_AMC	LO	Рутніа 8	NNPDF2.3 LO	A14
$tar{t}$	Powheg-BOX	NLO	Рутніа 8	NNPDF3.0 NLO/	A14
				NNPDF2.3 LO	
Single top	Powнеg-BOX [53–55]	NLO	Рутніа 8	NNPDF3.0 NLO/	A14
(t-, Wt-, s-channel))			NNPDF2.3 LO	
VV,qqVV,VVV	Sherpa 2.2.2	MePs@Nlo	SHERPA	NNPDF3.0 NNLO	Sherpa default
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	MePs@Nlo	SHERPA	NNPDF3.0 NLO	Sherpa default

$t\bar{t}W$ Model: Kinematic details

Background composition

20

Background composition

Previous results

ATLAS $t\bar{t}H$ combinations

