

SM and EFT Studies of ttHH Production at CMS using Run 2 Data

DPF2021 Meeting

Wei Wei University of California, Davis 07/12/2021

Outline

- Physics motivation and background
- Search for ttHH using full Run 2 data
 - 1. Event selection and analysis strategies
 - 2. Current status
- Study of ttHH in EFT
- Summary

Physics Motivation

- Higgs boson pair production in association with a top-quark pair plays an important role in Higgs physics
 - It provides a direct measurement of the top-quark Yukawa coupling y_t
 - It provides a measurement of trilinear Higgs self coupling λ_3 in the Higgs potential,

$$V = \frac{m_h^2}{2}h^2 + \lambda_3 v h^3 + \frac{\lambda_3}{4}h^4$$

ttHH does not have destructive interference terms at LO

• Thus ttHH is an important rare process to study with the largest available datasets

Wei Wei (UC Davis)

Cross sections and Rates

• The ttHH production will benefit from larger statistics in Run 2 (\sim 140/fb), Run 3 (\sim 300/fb) and HL-LHC (\sim 3000/fb).

Cross section at (N)LO as a function of self interaction λ . The dashed (solid) lines correspond to the LO (NLO) results

At 13 TeV: $\sigma(ttHH) = 0.775$ fb (NLO QCD)

At 14 TeV: $\sigma(ttHH) = 1$ fb (NLO QCD)

ttHH is expected to have ~ 3000 events at

HL-LHC

arXiv: 1401.7340

Previous CMS Related Analyses

- CMS Collaboration, "Measurement of ttH production in the H \rightarrow bb decay channel in 41.5fb-1 of proton-proton collision data at sqrt{s} = 13TeV." CMS-PAS-HIG-18-030.
- Leônidas Augusto Fernandes do Prado, "<u>Exploring the Higgs sector beyond the standard model with</u> the top Yukawa coupling: a phenomenological and experimental search", PhD thesis, 2020.

Best fit (μ)	Observed	$4.9^{+14.4}_{-12.8}$
95% CL upper limits on μ	Observed	32.9
	Expected (Median)	28.9
	Expected (68% CL range)	[20.1, 42.2]
	Expected (95% CL range)	[14.9, 59.6]

PhD thesis

PhD thesis

- Goal: perform ttHH(tt→SL, HH→bbbb) analysis using full Run 2 data (2016 2018).
- We are following the 2017 analysis strategy with an updated analysis framework.
- We expect tighter bounds on the signal strength (μ) and begin searching for deviations from the SM.

Event Selection

• Baseline Selection is the same as the ttH full Run 2 analysis (in progress)

SL channel	
Number of leptons	1
p_T of lepton (e/μ) [GeV]	> 30/29
p_T of additional lepton (e/μ) [GeV]	< 15
$ \eta $ of leptons and jets	< 2.4
Number of Jets	≥ 4
p_T of jets [GeV]	> 30
Number of b tagged jets	≥ 3
p_T^{miss} [GeV]	> 20

Results

• Currently using simulated 2017 SM samples:

Type	MC sample	Events
Signal	ttHH, HH -> bbbb, madgraph+pythia8	9888000
Background	ttH, H -> bb, powheg+pythia8	8000000
Background	TTToSemiLeptonic, powheg+pythia8	110014744
Background	TTToSemiLeptonic, powheg+pythia8+new pmx	43732445

▲ : used for DNN training

• Results:

	nGen	Selection
ttHH	9888000	1294101
ttHbb	8000000	616670
ttSL	43732445	353896

N-tupling trees are produced

Variables

N_BTagsL

N_BTagsM

 N_BTagsT

Jet_CSV

 Jet_E

Jet_M

Jet_Pt

Evt_Deta_JetsAverage RecoHiggs M

...

Deep Neural network (DNN)

Confusion matrices

• DNN training with all variables

Effective Field Theory Search

- ttHH is sensitive to Higgs self coupling, thus is also interesting for BSM physics searches
- Effective field theory: It studies possible deviations from SM below the energy scale and thus could reveal new physics (beyond Λ) without knowing the 'real' theory.

• A simplified EFT model is developed to study ttHH independently of ttH by introducing higher order gauge-invariant operators

$$\Delta \mathcal{L} = \frac{g_t}{2v} tthh = \frac{G_2 v^3}{\sqrt{2}} tthh$$

Wei Wei (UC Davis)

EFT Study

- Built the EFT model and generated MC events for ttHH
- Higgs is produced at higher pT due to the new vertex

SM:
$$\sigma(t\bar{t}HH) = 0.7494 \, fb$$

 $g_t = 0$: $\sigma(t\bar{t}HH) = 0.7387 \, fb$
 $g_t = 1$: $\sigma(t\bar{t}HH) = 1.959 \, fb$
 $g_t = 5$: $\sigma(t\bar{t}HH) = 20.91 \, fb$
 $g_t = 10$: $\sigma(t\bar{t}HH) = 76.16 \, fb$

- Observe an enhancement around the Higgs mass in the single b-jet mass spectrum
- These features provide new handles for signal search

Wei Wei (UC Davis)

Summary

- Presented a preliminary SM search for ttHH (tt→SL, HH→bbbb). A first iteration to set up the full DNN categorization procedure is in place.
- Showed kinematic results for ttHH in a simplified EFT model. Observe deviations from SM in single b-jet mass spectrum.
- The ttHH process will become more and more important as CMS accumulates data in Run 3 and HL-LHC

Thanks for your attention!

• Top quark

$$t \to bW, W \to \begin{bmatrix} lv_l : \Gamma \approx \frac{1}{3} \\ q\overline{q'} : \Gamma \approx \frac{2}{3} \end{bmatrix}$$

Semi-leptonic (SL): $tt \rightarrow bW \ bW \rightarrow q\overline{q'} \ l\nu_l$: $\Gamma \approx \frac{4}{9}$

- $H \rightarrow b\bar{b}$: $\Gamma \approx 0.57$
- $t\bar{t}$ (SL)HH (4b): $\Gamma \approx 0.57 \times 0.57 \times \frac{4}{9} \approx 0.14$

Decays of a 125 GeV Standard-Model Higgs boson

- The effect of destructive interference terms:
 - Due to the large destructive interference, the effect of the trilinear Higgs self-coupling in the LO total cross section amounts to a reduction of about 50% with respect to the box-only contribution. (1910.00012)
 - Decrease the sensitivity of measuring this Higgs coupling

Diagrams for Higgs pair production at LO

• Signal Model for ttHH

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + G_1(H^{\dagger}H)(QHt^c + \text{h.c.}) + G_2(H^{\dagger}H)^2(QHt^c + \text{h.c.})$$

$$G_1 \sim \frac{1}{M^2}, \qquad G_2 \sim \frac{1}{M^4}$$

$$m_t = \frac{y_t v}{\sqrt{2}} + \frac{G_1 v^3}{2\sqrt{2}} + \frac{G_2 v^5}{4\sqrt{2}}$$

$$g_{tth} = \frac{y_t}{\sqrt{2}} + \frac{3G_1 v^2}{2\sqrt{2}} + \frac{5G_2 v^4}{4\sqrt{2}}$$

$$g_{tth} = \frac{3G_1 v^2}{\sqrt{2}} + \frac{5G_2 v^4}{\sqrt{2}}$$

$$g_{tthh} = \frac{3G_1 v^2}{\sqrt{2}} + \frac{5G_2 v^4}{\sqrt{2}}$$

$$g_{tthh} = \sqrt{2}G_2 v^4$$

$$\Delta \mathcal{L} = \frac{g_t}{2v} tthh = \frac{G_2 v^3}{\sqrt{2}} tthh$$

• CMS Run 2 integrated luminosity

CMS Integrated Luminosity, pp, $\sqrt{s} = 13 \text{ TeV}$

Year	Integrated luminosity(/fb)
2016	35.9
2017	41.5
2018	59.7

• Built the EFT model and generated MC events for ttH to make sure it's unchanged

Generate ttH (LO) at $\sqrt{s} = 13 \, TeV$

SM:
$$\sigma(t\bar{t}H) = 0.3987 \ pb$$

 $g_t = 0$: $\sigma(t\bar{t}H) = 0.4007 \ pb$

$$g_t = 1: \sigma(t\bar{t}H) = 0.3988 \ pb$$