

EXPERIMENT

FLAS

APS PARTICLES & FIELDS

Study of inclusive Higgs-boson production at high transverse momentum in the H->bb decay mode with the ATLAS detector ATLAS-CONF-2021-010

> DPF21 Andrea Sciandra July, 12th 2021

Towards Dynamics of the Higgs Boson

- Shifting interest from static (inclusive cross section, couplings, ...) to
 dynamic properties of the Higgs boson
- Large dynamic range yet to explore for Higgs production in p_T^H , m(H+X), ...
 - New opportunities for reduction of systematic uncertainties (e.g. the higher p_T^H , the smaller the n. of events produced)
 - Different hierarchy of production modes
 - All production modes contribute ~equally, close to TeV scale
- Indirect sensitivity to Beyond-Standard-Model effects at large Q²
 - Complementary to Q~m_H precision studies
 - Sensitivity to New Physics (NP) enhanced approximately $\propto p_T H/v$

[Andrea Sciandra | *H*->*bb* production at high *p*_T^H with ATLAS | July, 12th 2021]

2

Production at High *p***^T^H & New Physics**

- Decay channels other than *bb*(BR~58%) and specific production modes signatures (e.g. *V(-*>*II,Iv,vv)H*) are pure
 - But limited p_T^H reach -> inclusive H->bb to access higher portion of the p_T^H spectrum
- At high p_T^H, can resolve loop-induced
 contributions to ggF from new particles

•

- Effective *ggH* vertex at low energy
- **EFT**: effects at high p_T^H enhanced by **powers of E/** Λ

Experimental Toolkit

- Looking into hadronic, i.e. *H->bb*, Higgs decay dynamics
- Angular separation of decay products can be expressed as:

$$\Delta R = \frac{1}{\sqrt{x(1-x)}} \frac{m_H}{p_{T_H}}$$

momentum fraction carried by decay products

- For Higgs decay x~0.5 $\longrightarrow \Delta R \approx 2 \frac{m_H}{p_{T_H}}$
- At high p_T^H (>250 GeV), Higgs decay products start being fully contained within $\Delta R = 1 -> m_J \sim m_H!$
 - -> Natural to use large-R calorimetric jets for high energetic H->bb production
- Identification of decay products performed through track jets within large-R calo jet
 - Collimation depends on *p*_T -> Variable-Radius track jets
- **b-tagging** applied to **2 leading track-jets** (2-prong decay structure)
 - Identify bb exploiting products of b-hadronization/fragmentation
- Correct large-R jet reconstructed mass and p_T by including muons from semi-leptonic b-decays

[Andrea Sciandra | *H*->*bb* production at high *p*_T^H with ATLAS | July, 12th 2021]

Event Selection & Analysis Strategy

Event selection

Signal region definitions

and reco-*p*⊤ range

- Large-R jet trigger with mass cut
 - $m_J \sim m_{X->bb}$ and Higgs is massive!
- At least one large-R jet with $p_T > 450 \& m_J > 60 \text{ GeV}$
- At least 2 large-R jets with p_T >200 GeV
 - High-*p*_T back-to-back topology requires **recoil** jet
- Categorization into signal regions (SR) based on b-tagging

and large-R jet (reconstructed) *p*_T requirements

Co	onsidered Je	t	Inclusive	Fid	ucial		Differentia	1
Type N h-tags Order*			Marine and the second state of the second		p_{T} R	ange [GeV]		
Турс	IN D-tags	Older	>250/450	>450	>1000	250-450	450–650	650–1000
			Signa	al Regio	ons			
Condidate	2	Lead	SRL	SRL	SRL	_	SRL1	SRL2
	2	Sublead	SRS	SRS	_	SRS0	SRS1	SRS2

Background Composition & Modeling

Recons

6

4

200

WCR,

400

- Do not rely on simulation for shape and normalization
- Main background estimated • fit to data in the region of int
- How many parameters? The choice depende on lander, • and it is a trade-off
 - Too few: not a good description of QCD •
 - Too many: 'eat' resonances and significance
- Fix and validate QCD modeling by means of studies in dedicated anti-tagged regions, fairly representing SRL/S statistics, $m_J \& p_T$ spectra (~x50-60)

600

Boosted H->bb Analysis Results

- Fiducial p_T^H > 450 GeV H->bb extraction
 - *H* cross section in a well-defined phase-space volume (*p*_T^H >450 GeV & |η|<2)
 - Fairly flat A x ε, useful to theory community
- Fiducial $p_T^H > 1$ TeV $H \rightarrow bb$ extraction
 - Probe Higgs production & potential large cross-section enhancement at very high p_T^H

- Differential (p_T) H->bb extraction
 - Extraction of **H** yield in bins of p_T^H from reco- p_T -binned SRs
 - Accounting for *p*_T^H vs. *p*_T migrations
 due to limited resolution
 - Sensitivity to EFT operators at high *p*T
- Differential (p_T) Z->bb measurement
 - Unique sensitivity to boosted production of hadronically-decaying Z
 - Combined extraction of *Z* p_T spectrum using same machinery as for *H*
 - Predictions at NNLO QCD + NLO EW

8

95% CL limits on Higgs production rates

Cross-section results

Z(->bb)+j Differential Extraction

Results fully compatible with SM

00

- Trend following negative p_T-dependent NLO EW corrections?
- Interesting excess overall, not observed in W-dominated anti-tagged region: something to learn with b-tagging efficiency in boosted environment?

Fiducial $p_T^H > 450$ GeV & 1 TeV Fit - Results

The two fiducial regions determine the Higgs boson yield and cross section in the phase space defined by the Higgs boson pseudo-rapidity range $|\eta_H| < 2.0$ and transverse momentum $p_T^H > 450$ GeV and $p_T^H > 1$ TeV μ_Z μ_H $\mu_{t\bar{t}}$ Signal-strength $p_{\rm T}^H$ /Jet $p_{\rm T}$ Obs. Exp. Obs. Exp. Exp. Obs. 1.0 ± 3.3 0.7 ± 3.3 > 450 GeV 1.00 ± 0.18 1.27 ± 0.22 1.00 ± 0.07 0.81 ± 0.06 results 0.51 ± 0.19 > 1 TeV $1.0 \pm 29.0 \ 26 \ \pm 31$ 1.0 ± 1.6 2.4 ± 1.7 1.0 ± 0.3 $p_{\rm T}^H > 450 \,{\rm GeV} \quad p_{\rm T}^H > 1 \,{\rm TeV}$ Process 0.25 0.18 All 0.26 0.22 ggF 0.27 0.19 Signal acceptance x efficiency for VHfiducial extractions 0.22 0.15 VBF 0.20 0.16 *ttH* **Cross-section** $\sigma_H(p_T^H > 450 \text{ GeV}) = 13 \pm 52 \text{ (stat.)} \pm 32 \text{ (syst.)} \pm 3 \text{ (theory) fb}$ **(~0.2σ)** $\sigma_H(p_T^H > 1 \text{ TeV}) = 3.4 \pm 3.9 \text{ (stat.)} \pm 1.0 \text{ (syst.)} \pm 0.8 \text{ (theory) fb}$ results **(~0.9σ)** 95% CL_s limits on $\sigma_H(p_T^H > 450 \text{ GeV}) < 144 \text{ fb}$ (~8x SM) $\sigma_H(p_T^H > 1 \text{ TeV}) < 10.3 \text{ fb}$ (~80x SM) production crosssections

[Andrea Sciandra | *H*->*bb* production at high *p*_T^H with ATLAS | July, 12th 2021] 10

Fiducial $p_T^H > 450 \text{ GeV } \& 1 \text{ TeV} - \text{Post-Fit Plots}$

Gel

Gev Ge

12

H->bb Differential Fit Results

- Higgs boson signal strength from 8 differential SR and CR regions
- Small correlations amongst strength parameters, positive correlations with *Z* signal strengths

Figure 7: For each of the differential regions, the expected signal event yield for all Higgs boson events (a) and the fraction of signal in percent (b) in each reconstructed region vs. the differential fiducial volumes.

H->bb Differential - Post-Fit Plots

[Andrea Sciandra | H->b

Overview, Conclusions & Plan:

- First ATLAS studies of Higgs boson produced at very high p_T with H->bb
- Cross-section extracted in multiple regions of increasing p_T^H
 - Within same kinematic ranges Z->bb production rates agree with SM
- First attempt to access Higgs production at p_T^H > 1 TeV
- Several ideas to improve sensitivity and understanding of boosted Higgs production
 - **Mode categorization** based on recoil jet (vs. *VH* and *ttH*)
 - Classifier(s) to reduce QCD Multijet background

Tuned!

Higgs-Signal Description & Composition

- Assume state-of-the-art predictions for Higgs boosted production (<u>LHCXSWG</u>)
 - Expected cross sections @NLO in QCD, ggF
 includes finite top mass effects
- *p*_T^H-dependent NLO EW corrections applied to VBF, VH & ttH
 - EW corrections not known for ggF
- Our phase space is, in fact, fully inclusive in Higgs production modes
- Acceptance varies with *p*_T, reflecting changes in hierarchy of production modes
 - *ttH* acceptance favored at low *p*_T, where two massive top quarks trigger
 - No attempt to disentangle modes

$p_{\rm T}^{\rm cut}$ [GeV]	<i>ggF</i> [fb]	VBF [fb]	<i>VH</i> [fb]	<i>ttH</i> [fb]
400	$32.30^{+10.89\%}_{-12.91\%}$	$14.23^{+0.15\%}_{-0.19\%}$	$11.16^{+4.12\%}_{-3.68\%}$	$6.89^{+12.62\%}_{-12.97\%}$
450	$18.08^{+10.78}_{-12.79}$	$8.06^{+0.24}_{-0.23}$	$6.87^{+4.6}_{-3.49}$	$4.24_{-13}^{+12.84}$
500	$10.17^{+10.67}_{-12.74}$	$4.75_{-0.29}^{+0.33}$	$4.39^{+4.43}_{-4.04}$	$2.66^{+12.85}_{-13.22}$
550	$5.87^{+10.54}_{-12.60}$	$2.90^{+0.34}_{-0.36}$	$2.87^{+4.44}_{-3.74}$	$1.76^{+14.23}_{-13.93}$
600	$3.48^{+10.35}_{-12.49}$	$1.82^{+0.41}_{-0.39}$	$1.91^{+5.22}_{-4.71}$	$1.11^{+12.99}_{-13.4}$
650	$2.13^{+10.23}_{-12.45}$	$1.17_{-0.39}^{+0.49}$	$1.30^{+4.67}_{-4.28}$	$0.72^{+12.6}_{-13.26}$
700	$1.32^{+10.03}_{-12.32}$	$0.77_{-0.45}^{+0.57}$	$0.90^{+4.15}_{-5.4}$	$0.47^{+11.42}_{-12.74}$
750	$0.84^{+10.05}_{-12.31}$	$0.51_{-0.56}^{+0.69}$	$0.62^{+5.15}_{-4.66}$	$0.32^{+11.53}_{-12.84}$
800	$0.54^{+9.91}_{-12.24}$	$0.35_{-0.6}^{+0.71}$	$0.44_{-4.13}^{+5.64}$	$0.22^{+11.42}_{-13.3}$

V+j Modelling & Mass Resolution (JMR) vs. p_T

Interaction between V+j template & QCD flexible model makes it impossible to simultaneously extract V+j width and normalization -> extraction of dedicated W/Z Jet Mass Resolution constraints in dedicated regions

20

18

16

12

10

2

WCR.

W+Z VRL

ATLAS Preliminary

🔲 Fit

√s= 13 TeV, 136-139 fb⁻

Reconstructed Peak Width [GeV]

MR constraints obtained from Sherpa JMR fit results via folding with SR $p_{\rm T}$ Spectrum					
Region	Average $p_{\rm T}$ [GeV]	Fit value	p _T -Folded	$\mu_{\rm ext}$	$\sigma_{\rm ext}$
Inclusive SRL	562	0.051 ± 0.108	0.056 ± 0.122	0.056	0.158
SRL1	520	0.070 ± 0.104	0.071 ± 0.107	0.071	0.146
SRL2	775	-0.014 ± 0.185	-0.018 ± 0.198	-0.018	0.222
Inclusive SRS	516	0.070 ± 0.104	0.074 ± 0.116	0.074	0.153
SRS0	381	0.127 ± 0.105	0.127 ± 0.100	0.127	0.141
SRS1	520	0.070 ± 0.104	0.071 ± 0.107	0.071	0.146
SRS2	775	-0.014 ± 0.185	-0.018 ± 0.198	-0.018	0.212

QCD Multijet Background Modeling

Statistical Analysis (Details)

- Signal yields extracted minimising NLL with RooStats
 - Fits performed to full large-R jet mass range [70/5,210] GeV & with 5-GeV bin width (RooFit developments to fix NLL bias)
 - Limits on the Higgs production rate derived using the CL_s method
- *H/Z->bb* STXS: *H/Z+j* contribution binned in truth-p_T bins: [300,450], [450,650], [650,inf] GeV , [0,300] GeV fixed to SM
- Systematic uncertainties included as constrained parameters; normalisation of MC templates within each reco-pT region or fiducial volume & QCD parameters floating
 - **W+j contribution fixed to SM** prediction within uncertainties (+/-10% Gaussian prior)
- Table: systematic variations included in fits

Description	Processes	Category	Effect		
Experimental Systematic Uncertainties					
JMR	$t\bar{t}, V+$ jets, H	$p_{\rm T}$ bins	N+S		
JMS (dominant)	$t\bar{t}, V+$ jets, H	$p_{\rm T}$ bins	N+S		
JMS (rest)	$t\bar{t}$, V+ jets +H	all	N+S		
Jet energy scale	$all^{(*)}$	all	N+S		
Jet energy resolution	all	all	N+S		
<i>b</i> -tag efficiency <i>b</i> -jets	all	all	N+S		
<i>b</i> -tag efficiency <i>c</i> -jets	all	all	N+S		
<i>b</i> -tag efficiency <i>l</i> -jets	all	all	N+S		
Modeling Systematic Uncertainties					
Cross-section and acceptance	W+ jets	all	Ν		
Renormalization and factorization scale	V+ jets	all	N+S		
Parton shower model	$t\bar{t}$	all	N+S		
Matrix element calculation	$t\bar{t}$	all	N+S		
Initial-/Final-state radiation	$t\overline{t}$	all	N+S		
Acceptance	H	all	Ν		
NLO EW corrections	$VBF+VH+t\bar{t}H$	all	Ν		
NLO E w corrections	V+ jets	all	Ν		
Spurious signal	H	$p_{\rm T}^H$ bins × LS	Ν		
	Z + jets ^(•)	$p_{\rm T}^{\rm Z}$ bins × LS	Ν		

V+j NNLO QCD k-Factors

- Sherpa 2.2.8 V+j is generated @NLO in QCD, on-the-fly NLO EW corrections applied
- <u>NNLOJET</u> calculations, @NNLO in QCD, limited to 8 TeV
- Help from Alexander Huss & the NNLOJET group to get NNLO QCD k-factors in our fiducial region
 - NNLO k-factor computed for the three kinematical bins of the analysis
 - **pT**-averaged k-factors, rather flat

NNLOJET results sampled with the p_T
spectrum for each analysis region

250-450	1 013	10.0016	+0.23
	1.015	± 0.0010	-0.27
450-650	1.076	±0.0011	+0.06
650-3000	1.081	±0.0010	+0.07 -0.08

Region	< <i>p</i> _T >	< NNLOk – factor >
SRL [450-3000]	562	1.071
SRL [450-650]	520	1.069
SRL [650-3000]	775	1.084
SRS [250-3000]	516	1.068
SRS [250-450]	381	1.059
SRS [450-450]	520	1.069
SRS [650-3000]	775	1.083