Massless Preheating and Electroweak Vacuum Metastability

Jeff Kost [University of Sussex]

[arXiv:2105.06939]

collaborators on this work: Chang Sub Shin [IBS-CTPU] Takahiro Terada [IBS-CTPU]

2021 APS Divison of Particles and Fields Meeting

Monday, July 12th, 2021

Massless Preheating and Electroweak Vacuum Metastability

• Current measurements of SM parameters suggest the Higgs self-coupling $\lambda_h(\mu)$ runs *negative* at energy scales $\mu \gtrsim 10^{10} \, \text{GeV}$

$$V(h) \supset \frac{1}{4}\lambda_h(\mu)h^4$$

[arXiv:1809.06923] • Current measurements of SM parameters 0.14 $M_{t0} \pm 3\sigma_M$ suggest the Higgs self-coupling $\lambda_h(\mu)$ runs $M_{t0} \pm 2\sigma_M$ $M_{t0} \pm \sigma_{M_t}$ $-M_{b0} \pm 3\sigma_{M_b}$ *negative* at energy scales $\mu \gtrsim 10^{10} \,\text{GeV}$ $\alpha e \pm 3\sigma_{\alpha e}$ 0.1 $M_{40} = 173.1 \text{ GeV}, M_{10} = 125.18 \text{ GeV}$ 0.08 $V(h) \supset \frac{1}{4} \lambda_h(\mu) h^4$ 0.06 $\lambda(\mu)$ 0.04 0.02 -0.02 -0.04 10¹⁰ 105 1015 μ/Ge

• Current measurements of SM parameters suggest the Higgs self-coupling $\lambda_h(\mu)$ runs negative at energy scales $\mu \gtrsim 10^{10} \, {\rm GeV}$

$$V(h) \supset \frac{1}{4} \lambda_h(\mu) h^4$$

i.e., electroweak vacuum is metastable.

• Current measurements of SM parameters suggest the Higgs self-coupling $\lambda_h(\mu)$ runs negative at energy scales $\mu \gtrsim 10^{10} \, {\rm GeV}$

$$V(h) \supset \frac{1}{4} \lambda_h(\mu) h^4$$

i.e., electroweak vacuum is metastable.

V(h)

א ל

• Current measurements of SM parameters suggest the Higgs self-coupling $\lambda_h(\mu)$ runs negative at energy scales $\mu \gtrsim 10^{10} \, {\rm GeV}$

$$V(h) \supset \frac{1}{4} \lambda_h(\mu) h^4$$

i.e., electroweak vacuum is metastable.

SEX Jeff Kost

V(h)

• Current measurements of SM parameters suggest the Higgs self-coupling $\lambda_h(\mu)$ runs negative at energy scales $\mu \gtrsim 10^{10} \, {\rm GeV}$

$$V(h) \supset \frac{1}{4} \lambda_h(\mu) h^4$$

i.e., electroweak vacuum is metastable.

Jeff Kost

• Current measurements of SM parameters suggest the Higgs self-coupling $\lambda_h(\mu)$ runs negative at energy scales $\mu \gtrsim 10^{10} \, {\rm GeV}$

$$V(h) \supset \frac{1}{4} \lambda_h(\mu) h^4$$

i.e., electroweak vacuum is metastable.

• Timescale for vacuum decay today is much longer than age of the universe, **BUT** dynamics earlier in cosmological history would have *significantly* threatened **destabilization**.

Jeff Kost

• Current measurements of SM parameters suggest the Higgs self-coupling $\lambda_h(\mu)$ runs negative at energy scales $\mu \gtrsim 10^{10} \, {\rm GeV}$

$$V(h) \supset \frac{1}{4} \lambda_h(\mu) h^4$$

i.e., electroweak vacuum is metastable.

• Timescale for vacuum decay today is much longer than age of the universe, **BUT** dynamics earlier in cosmological history would have *significantly* threatened **destabilization**.

The fact that false vacuum has persisted may provide *window* into early-universe dynamics involving the Higgs field.

Massless Preheating and Electroweak Vacuum Metastability

During inflation:

 \bullet Light scalar fields generically develop fluctuations proportional to Hubble scale H. For the Higgs, this could trigger decay of the vacuum.

During inflation:

 \bullet Light scalar fields generically develop fluctuations proportional to Hubble scale H. For the Higgs, this could trigger decay of the vacuum.

 \Rightarrow need interactions that stabilize Higgs during inflation

During inflation:

 \bullet Light scalar fields generically develop fluctuations proportional to Hubble scale H. For the Higgs, this could trigger decay of the vacuum.

 \Rightarrow need interactions that stabilize Higgs during inflation

• Minimal such extensions involve scalar curvature R and/or inflaton ϕ :

$$\mathcal{L} \supset -\frac{1}{2}\xi_h h^2 R - \frac{1}{2}g^2 h^2 \phi^2$$

During inflation:

 \bullet Light scalar fields generically develop fluctuations proportional to Hubble scale H. For the Higgs, this could trigger decay of the vacuum.

 \Rightarrow need interactions that stabilize Higgs during inflation

• Minimal such extensions involve scalar curvature R and/or inflaton ϕ :

$$\mathcal{L} \supset -rac{1}{2}\xi_h h^2 R - rac{1}{2}g^2 h^2 \phi^2$$

HOWEVER, after inflation:

• These interactions tend to *destabilize* the Higgs after inflation due to non-perturbative preheating dynamics, recreating our metastability problem

During inflation:

 \bullet Light scalar fields generically develop fluctuations proportional to Hubble scale H. For the Higgs, this could trigger decay of the vacuum.

 \Rightarrow need interactions that stabilize Higgs during inflation

• Minimal such extensions involve scalar curvature R and/or inflaton ϕ :

$$\mathcal{L} \supset -rac{1}{2}\xi_h h^2 R - rac{1}{2}g^2 h^2 \phi^2$$

HOWEVER, after inflation:

• These interactions tend to *destabilize* the Higgs after inflation due to non-perturbative preheating dynamics, recreating our metastability problem

Specifically, ϕ gives Higgs fluctuations h_k time-dependent, oscillatory effective masses:

$$\omega_{h_k}^2 = \frac{k^2}{a^2} + g^2 \phi^2 + \xi_h R$$

During inflation:

 \bullet Light scalar fields generically develop fluctuations proportional to Hubble scale H. For the Higgs, this could trigger decay of the vacuum.

 \Rightarrow need interactions that stabilize Higgs during inflation

 \bullet Minimal such extensions involve scalar curvature R and/or inflaton ϕ :

$$\mathcal{L} \supset -rac{1}{2}\xi_h h^2 R - rac{1}{2}g^2 h^2 \phi^2$$

HOWEVER, after inflation:

• These interactions tend to *destabilize* the Higgs after inflation due to non-perturbative preheating dynamics, recreating our metastability problem

During inflation:

 \bullet Light scalar fields generically develop fluctuations proportional to Hubble scale H. For the Higgs, this could trigger decay of the vacuum.

 \Rightarrow need interactions that stabilize Higgs during inflation

 \bullet Minimal such extensions involve scalar curvature R and/or inflaton ϕ :

$$\mathcal{L} \supset -rac{1}{2}\xi_h h^2 R - rac{1}{2}g^2 h^2 \phi^2$$

HOWEVER, after inflation:

• These interactions tend to *destabilize* the Higgs after inflation due to non-perturbative preheating dynamics, recreating our metastability problem

Massless Preheating and Electroweak Vacuum Metastability

 \Rightarrow models usually viable for some range of couplings

 \Rightarrow models usually viable for some range of couplings

important exception: models which exhibit scale invariance, since dynamical properties are *independent* of expansion.

i.e., models of "massless preheating"

 \Rightarrow models usually viable for some range of couplings

important exception: models which exhibit scale invariance, since dynamical properties are *independent* of expansion.

i.e., models of "massless preheating"

Under minimal assumptions, this corresponds to (Jordan-frame) potential

$$V_{\rm J}(\phi,h) = \frac{1}{4}\lambda_{\phi}\phi^4 + \frac{1}{2}g^2h^2\phi^2 + \frac{1}{4}\lambda_hh^4$$

 \Rightarrow models usually viable for some range of couplings

important exception: models which exhibit scale invariance, since dynamical properties are *independent* of expansion.

i.e., models of "massless preheating"

Under minimal assumptions, this corresponds to (Jordan-frame) potential

$$V_{\rm J}(\phi,h) = \frac{1}{4}\lambda_{\phi}\phi^4 + \frac{1}{2}g^2h^2\phi^2 + \frac{1}{4}\lambda_hh^4$$

 \Rightarrow background inflaton evolution:

$${d^2 arphi \over d\eta^2} + \lambda_\phi arphi^3 ~=~ 0$$

for conformal time η and $\varphi \equiv a \phi$

$$\varphi(x) = \overline{\varphi} \operatorname{cn}\left(x - x_0, \frac{1}{\sqrt{2}}\right),$$

with rescaled time $x \equiv \sqrt{\lambda_{\phi}}\overline{\varphi}\eta$.

 \Rightarrow models usually viable for some range of couplings

important exception: models which exhibit scale invariance, since dynamical properties are *independent* of expansion.

i.e., models of "massless preheating"

Under minimal assumptions, this corresponds to (Jordan-frame) potential

$$V_{\rm J}(\phi,h) = \frac{1}{4}\lambda_{\phi}\phi^4 + \frac{1}{2}g^2h^2\phi^2 + \frac{1}{4}\lambda_hh^4$$

Similarly, Higgs fluctuations grow *steadily* and *uninterrupted*—appears catastrophic for EW metastability.

on closer inspection, is there a **regime of viability** for massless preheating?

• Our preheating study is relatively independent of the inflationary model.

- Our preheating study is relatively independent of the inflationary model.
- Nevertheless, a viable inflationary regime is realized by allowing a **non-minimal coupling** for the inflaton

- Our preheating study is relatively independent of the inflationary model.
- Nevertheless, a viable inflationary regime is realized by allowing a **non-minimal coupling** for the inflaton

$$\mathcal{L} \supset -\frac{1}{2}\xi_{\phi}\phi^2 R.$$

• For generality, we also consider both the metric $(\theta = 1)$ and Palatini formulations $(\theta = 0)$ of gravity.

- Our preheating study is relatively independent of the inflationary model.
- Nevertheless, a viable inflationary regime is realized by allowing a non-minimal coupling for the inflaton

$$\mathcal{L} \supset -\frac{1}{2}\xi_{\phi}\phi^{2}R.$$
• For generality, we also consider
both the metric ($\theta = 1$) and Palatini
formulations ($\theta = 0$) of gravity.
• Overall, we have the (Einstein-frame)
potential in the inflationary regime
$$V_{\rm E}(\tilde{\phi}) = \frac{\lambda_{\phi}}{4\xi_{\phi}^{2}} \begin{cases} \tanh^{4}(\sqrt{-\xi_{\phi}}\tilde{\phi}) \text{ for } \theta = 0\\(1 - e^{-\sqrt{\frac{2}{3}}\tilde{\phi}})^{2} \text{ for } \theta = 1\end{cases}$$

where ϕ is the canonical inflaton field.

p

V

• The effective masses of Higgs fluctuations (in Einstein frame) are

• The effective masses of Higgs fluctuations (in Einstein frame) are

$$\omega_{\mathcal{H}_{k}}^{2} = k^{2} + g^{2} \varphi^{2} \left(1 + \xi_{\phi} \frac{\varphi^{2}}{a^{2}}\right) + \frac{\xi a^{2}R}{\xi a^{2} l a^{2}} \xi \equiv \xi_{h} + \xi_{\phi} - 6\theta \xi_{h} \xi_{\phi} - \frac{1}{6}$$

• The effective masses of Higgs fluctuations (in Einstein frame) are

$$\omega_{\mathcal{H}_{k}}^{2} = k^{2} + g^{2} \varphi^{2} \left(1 + \xi_{\phi} \frac{\varphi^{2}}{a^{2}}\right) + \xi a^{2} R$$
falls as $1/a^{2}$

$$\xi \equiv \xi_{h} + \xi_{\phi} - 6\theta \xi_{h} \xi_{\phi} - \frac{1}{6}$$
falls as $1/a^{2}$

• The effective masses of Higgs fluctuations (in Einstein frame) are

$$\omega_{\mathcal{H}_k}^2 = k^2 + g^2 \varphi^2 \left(1 + \xi_{\phi} \frac{\varphi^2}{a^2}\right) + \xi a^2 R$$
no dissipation
$$\xi \equiv \xi_h + \xi_{\phi} - 6\theta \xi_h \xi_{\phi} - \frac{1}{6}$$
falls as $1/a^2$

 \Rightarrow In general, Higgs has two dynamical phases of evolution:

• The effective masses of Higgs fluctuations (in Einstein frame) are

$$\omega_{\mathcal{H}_k}^2 = k^2 + g^2 \varphi^2 \left(1 + \xi_{\phi} \frac{\varphi^2}{a^2}\right) + \xi a^2 R$$
no dissipation
$$\xi \equiv \xi_h + \xi_{\phi} - 6\theta \xi_h \xi_{\phi} - \frac{1}{6}$$
falls as $1/a^2$

 \Rightarrow In general, Higgs has two dynamical phases of evolution:

1) tachyonic production driven by curvature interactions [relatively short lived since terms dissipate as $1/a^2$]

$$n_h \simeq \frac{1}{8} \left(\sqrt{\lambda_{\phi}} \overline{\varphi} \right)^3 \left(\frac{3^{9/4} \sqrt{\xi}}{2\pi x^2} \right)^{3/2} \left(\frac{x}{x_0} \right)^{4\sqrt{\frac{2\xi}{3\sqrt{3}}}} \quad \text{for } x \lesssim \sqrt{6\xi}$$
$$(\text{and } \xi > 0)$$

• The effective masses of Higgs fluctuations (in Einstein frame) are

$$\omega_{\mathcal{H}_k}^2 = k^2 + g^2 \varphi^2 \left(1 + \xi_{\phi} \frac{\varphi^2}{a^2}\right) + \xi a^2 R$$
no dissipation
$$\xi \equiv \xi_h + \xi_{\phi} - 6\theta \xi_h \xi_{\phi} - \frac{1}{6}$$
falls as $1/a^2$

 \Rightarrow In general, Higgs has **two dynamical phases** of evolution:

1) tachyonic production driven by curvature interactions [relatively short lived since terms dissipate as $1/a^2$]

$$n_h \simeq \frac{1}{8} \left(\sqrt{\lambda_\phi} \overline{\varphi} \right)^3 \left(\frac{3^{9/4} \sqrt{\xi}}{2\pi x^2} \right)^{3/2} \left(\frac{x}{x_0} \right)^{4\sqrt{\frac{2\xi}{3\sqrt{3}}}} \quad \text{for } x \lesssim \sqrt{6\xi}$$
$$(\text{and } \xi > 0)$$

) **parametric resonance** driven by quartic interaction [*terms do not dissipate* due to scale invariance ⇒ unimpeded Higgs production]

$$n_h \simeq \frac{1}{2} \left(\frac{\sqrt{\lambda_\phi} \overline{\varphi}}{2\pi} \right)^3 \left(\frac{g^2}{2\lambda_\phi} \right)^{3/4} \frac{e^{2\mu_{\max}x}}{\sqrt{\mu_{\max}x}}$$

• The effective masses of Higgs fluctuations (in Einstein frame) are

$$\omega_{\mathcal{H}_k}^2 = k^2 + g^2 \varphi^2 \left(1 + \xi_{\phi} \frac{\varphi^2}{a^2}\right) + \xi a^2 R$$
no dissipation
$$\xi \equiv \xi_h + \xi_{\phi} - 6\theta \xi_h \xi_{\phi} - \frac{1}{6}$$
falls as $1/a^2$

 \Rightarrow In general, Higgs has **two dynamical phases** of evolution:

1) tachyonic production driven by curvature interactions [relatively short lived since terms dissipate as $1/a^2$]

$$n_h \simeq \frac{1}{8} \left(\sqrt{\lambda_\phi} \overline{\varphi} \right)^3 \left(\frac{3^{9/4} \sqrt{\xi}}{2\pi x^2} \right)^{3/2} \left(\frac{x}{x_0} \right)^{4\sqrt{\frac{2\xi}{3\sqrt{3}}}} \quad \text{for } x \lesssim \sqrt{6\xi}$$
$$(\text{and } \xi > 0)$$

parametric resonance driven by quartic interaction [*terms do not dissipate* due to scale invariance \Rightarrow unimpeded Higgs production]

$$n_h \simeq \frac{1}{2} \left(\frac{\sqrt{\lambda_\phi} \overline{\varphi}}{2\pi} \right)^3 \left(\frac{g^2}{2\lambda_\phi} \right)^{3/4} \underbrace{e^{2\mu_{\max}x}}_{\sqrt{\mu_{\max}x}} \mathbf{f}$$
 growth rate μ_{\max} has non-trivial dependence on coupling g^2/λ_ϕ

Two important effects neglected thus far:

perturbative decays of produced Higgs particles
 backreaction of particle production on the system

9

70

60

 $x \equiv \sqrt{\lambda_{\phi}}\overline{\varphi}\eta$

1) Perturbative Higgs Decays

• A crucial effect we have ignored thus far is that the Higgs undergoes **perturbative decays** to SM particles.

• The dominant decay channel is into top quarks with the (rest-frame) decay rate

$$\Gamma_h = \frac{3y_t^2 m_h}{16\pi}$$

and effective mass $m_h \equiv \sqrt{g^2 \phi^2 + \xi R}$.

1) Perturbative Higgs Decays

• A crucial effect we have ignored thus far is that the Higgs undergoes **perturbative decays** to SM particles.

• The dominant decay channel is into top quarks with the (rest-frame) decay rate

$$\Gamma_h = \frac{3y_t^2 m_h}{16\pi}$$

and effective mass $m_h \equiv \sqrt{g^2 \phi^2 + \xi R}$.

 \bullet As $\xi R \to 0,$ the effect on the Higgs phase-space density n_{h_k} is to dissipate it as

$$\log n_{h_k} \propto -\int dx \frac{a\Gamma_h}{\sqrt{\lambda_\phi}\overline{\varphi}} \approx -0.036y_t^2 \sqrt{\frac{g^2}{\lambda_\phi}x}$$

1) Perturbative Higgs Decays

• A crucial effect we have ignored thus far is that the Higgs undergoes **perturbative decays** to SM particles.

• The dominant decay channel is into top quarks with the (rest-frame) decay rate

$$\Gamma_h = \frac{3y_t^2 m_h}{16\pi}$$

and effective mass $m_h \equiv \sqrt{g^2 \phi^2 + \xi R}$.

 \bullet As $\xi R \to 0,$ the effect on the Higgs phase-space density n_{h_k} is to dissipate it as

$$\log n_{h_k} \propto -\int dx \frac{a\Gamma_h}{\sqrt{\lambda_\phi}\overline{\varphi}} \approx -0.036 y_t^2 \sqrt{\frac{g^2}{\lambda_\phi}} x_{t_{\phi}}$$

The decay exponent depends linearly on time, same as growth exponents $2\mu_k x$. \Rightarrow decays could *entirely* suppress production of Higgs particles.

does not occur in massive preheating

• Although fluctuations grow unimpeded, eventually their energy density will be comprable to inflaton background

- variance of fluctuations

$$\ddot{\phi} + 3H\dot{\phi} + \lambda_{\phi}\phi^{3} + (3\lambda_{\phi}\langle\phi^{2}\rangle + g^{2}\langle h^{2}\rangle)\phi = 0$$

backreaction on inflaton

• Although fluctuations grow unimpeded, eventually their energy density will be comprable to inflaton background variance of fluctuations

$$\ddot{\phi} + 3H\dot{\phi} + \lambda_{\phi}\phi^{3} + \left(3\lambda_{\phi}\langle\phi^{2}\rangle + g^{2}\langle h^{2}\rangle\right)\phi = 0$$

backreaction on inflaton

 \Rightarrow backreaction *terminates* (linear stage of) preheating, ending the dangerous particle production processes

• Although fluctuations grow unimpeded, eventually their energy density will be comprable to inflaton background variance of fluctuations

$$\ddot{\phi} + 3H\dot{\phi} + \lambda_{\phi}\phi^{3} + (3\lambda_{\phi}\langle\phi^{2}\rangle + g^{2}\langle h^{2}\rangle)\phi = 0$$

backreaction on inflaton

 \Rightarrow backreaction *terminates* (linear stage of) preheating, ending the dangerous particle production processes

Ultimately due to $\langle \phi^2 \rangle$, ending linear stage at $x_{\rm NL} \approx 405$ (with $\lambda_{\phi} = 10^{-10}$).

• Although fluctuations grow unimpeded, eventually their energy density will be comprable to inflaton background

$$\ddot{\phi} + 3H\dot{\phi} + \lambda_{\phi}\phi^{3} + \left(3\lambda_{\phi}\langle\phi^{2}\rangle + g^{2}\langle h^{2}\rangle\right)\phi = 0$$

backreaction on inflaton

 \Rightarrow backreaction *terminates* (linear stage of) preheating, ending the dangerous particle production processes

Ultimately due to $\langle \phi^2 \rangle$, ending linear stage at $x_{\rm NL} \approx 405$ (with $\lambda_{\phi} = 10^{-10}$).

• Also modifies the effective masses of the Higgs fluctuations

$$\omega_{h_k}^2 = \frac{k^2}{a^2} + g^2 \phi^2 + \xi_h R + g^2 \langle \phi^2 \rangle + 3\lambda_h \langle h^2 \rangle$$

• Although fluctuations grow unimpeded, eventually their energy density will be comprable to inflaton background

$$\ddot{\phi} + 3H\dot{\phi} + \lambda_{\phi}\phi^{3} + (3\lambda_{\phi}\langle\phi^{2}\rangle + g^{2}\langle h^{2}\rangle)\phi = 0$$

backreaction on inflaton

 \Rightarrow backreaction *terminates* (linear stage of) preheating, ending the dangerous particle production processes

Ultimately due to $\langle \phi^2 \rangle$, ending linear stage at $x_{\rm NL} \approx 405$ (with $\lambda_{\phi} = 10^{-10}$).

• Also modifies the effective masses of the Higgs fluctuations

$$\omega_{h_k}^2 = \frac{k^2}{a^2} + g^2 \phi^2 + \xi_h R + g^2 \langle \phi^2 \rangle + \frac{3\lambda_h \langle h^2 \rangle}{a^2}$$

source of destabilization

• Although fluctuations grow unimpeded, eventually their energy density will be comprable to inflaton background variance of fluctuations

$$\ddot{\phi} + 3H\dot{\phi} + \lambda_{\phi}\phi^{3} + \left(3\lambda_{\phi}\langle\phi^{2}\rangle + g^{2}\langle h^{2}\rangle\right)\phi = 0$$

backreaction on inflaton

 \Rightarrow backreaction *terminates* (linear stage of) preheating, ending the dangerous particle production processes

Ultimately due to $\langle \phi^2 \rangle$, ending linear stage at $x_{\rm NL} \approx 405$ (with $\lambda_{\phi} = 10^{-10}$).

• Also modifies the effective masses of the Higgs fluctuations

$$\omega_{h_k}^2 = \frac{k^2}{a^2} + g^2 \phi^2 + \xi_h R + g^2 \langle \phi^2 \rangle + \frac{3\lambda_h \langle h^2 \rangle}{source of destabilization}$$

 \Rightarrow tachyonic contribution $(3\lambda_h \langle h^2 \rangle < 0)$ can destabilize Higgs prior to $x_{\rm NL}$.

Jeff Kost

Massless Preheating and Electroweak Vacuum Metastability

Calculate vacuum decay time $x_{\rm dec}$ numerically over parameter space of $\{g^2/\lambda_{\phi},\xi\}$ Higgs couplings.

Calculate vacuum decay time $x_{\rm dec}$ numerically over parameter space of $\{g^2\!/\!\lambda_\phi,\xi\}$ Higgs couplings.

SOME OBSERVATIONS:

Calculate vacuum decay time $x_{\rm dec}$ numerically over parameter space of $\{g^2\!/\!\lambda_\phi,\xi\}$ Higgs couplings.

SOME OBSERVATIONS:

• large number of disjoint metastable regions distributed throughout parameter space

Calculate vacuum decay time $x_{\rm dec}$ numerically over parameter space of $\{g^2\!/\!\lambda_\phi,\xi\}$ Higgs couplings.

SOME OBSERVATIONS:

- large number of disjoint metastable regions distributed throughout parameter space
- due to perturbative decays, a contiguous metastable region emerges at $g^2/\lambda_\phi\gtrsim 2\times 10^3$

Calculate vacuum decay time $x_{\rm dec}$ numerically over parameter space of $\{g^2\!/\!\lambda_\phi,\xi\}$ Higgs couplings.

SOME OBSERVATIONS:

- large number of disjoint metastable regions distributed throughout parameter space
- due to perturbative decays, a contiguous metastable region emerges at $g^2/\lambda_\phi\gtrsim 2\times 10^3$
- curvature coupling imposes envelope over metastable regions at $\xi \lesssim g^2 / \lambda_{\phi}$ —*i.e.*, large ξ viable as long as g^2 / λ_{ϕ} is similarly large. –

TAKE-HOME MESSAGE:

• Although models that lead to massless preheating appear catastrophic for electroweak vacuum metastability, fully accounting for backreaction and perturbative decays reveals a large number of disjoint (meta)stable regions.

• In contrast to other (massive) preheating scenarios, the Higgs-inflaton coupling is ultimately bounded *from below* to ensure viability.

TAKE-HOME MESSAGE:

• Although models that lead to massless preheating appear catastrophic for electroweak vacuum metastability, fully accounting for backreaction and perturbative decays reveals a large number of disjoint (meta)stable regions.

• In contrast to other (massive) preheating scenarios, the Higgs-inflaton coupling is ultimately bounded *from below* to ensure viability.

FUTURE WORK/DIRECTIONS:

- Inclusion of terms in inflaton potential, *e.g.*, small mass terms, that break scale invariance—new phases of evolution would be considered.
- \bullet The effect of spectator fields on the dynamics and non-linear onset $x_{\rm NL}.$
- Extensions to multi-inflaton models with significant angular velocity
- Further extension of gravity formulation, e.g., to Einstein-Cartan gravity.

TAKE-HOME MESSAGE:

• Although models that lead to massless preheating appear catastrophic for electroweak vacuum metastability, fully accounting for backreaction and perturbative decays reveals a large number of disjoint (meta)stable regions.

• In contrast to other (massive) preheating scenarios, the Higgs-inflaton coupling is ultimately bounded *from below* to ensure viability.

FUTURE WORK/DIRECTIONS:

- Inclusion of terms in inflaton potential, *e.g.*, small mass terms, that break scale invariance—new phases of evolution would be considered.
- \bullet The effect of spectator fields on the dynamics and non-linear onset $x_{\rm NL}.$
- Extensions to multi-inflaton models with significant angular velocity
- Further extension of gravity formulation, e.g., to Einstein-Cartan gravity.

THANK YOU FOR YOUR ATTENTION!

