Cosmological Measurements of Massive Light Relics

DPF2021

W. Linda Xu

with Nick Deporzio, Julian Muñoz, & Cora Dvorkin

[2006.09395, 2006.09380 & Ongoing work]

Harvard University \rightarrow UC Berkeley/LBNL

W. Linda Xu

Cosmological Measurements of Massive Light Relics

- "Light" : Visible, ordinary particle content $\sim 15\%$
- "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless

- $\blacktriangleright\,$ "Light" : Visible, ordinary particle content $\sim 15\%$
- "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless

- "Light" : Visible, ordinary particle content $\sim 15\%$
- "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless
 - Some fraction can be not that

- $\blacktriangleright\,$ "Light" : Visible, ordinary particle content $\sim 15\%\,$
- "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless
 - Some fraction can be not that
 - Neutrinos definitely exist, other light relics might too
 - We stand a chance to detect them

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Two categories:

Neutrinos
 ► Last piece of the SM
 ► Massive, but unresolved
 Not Neutrinos

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Two categories:

Neutrinos ► Last piece of the SM ► Massive, but unresolved Not Neutrinos

- ► New particles!
- ► Ubiquitous in SM extensions

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Two categories:

Neutrinos

- ► Last piece of the SM
- Massive, but unresolved
- Not Neutrinos (LiMRs)
 - ► New particles!
 - ► Ubiquitous in SM extensions



._...

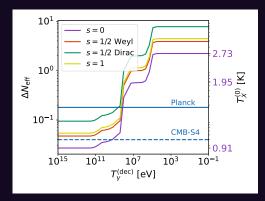
The big picture

CDM clusters at all scales, LiMRs do not

 Signature at small-scale modes (LSS!)

free-streamine

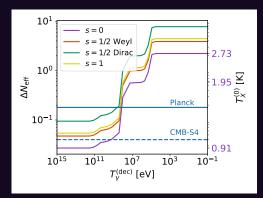
Massive Light Relics: The basics


A relic X is characterized by its

- Mass m_X
- \blacktriangleright (present-day) Temperature $T_X^{(0)}$
- Thermalized* dofs g_X (bosonic or fermionic)

*Higher-spin particles have effective $g_X = 2$

Massive Light Relics: The basics Free Parameters: $\{m_X, T_X^{(0)}, g_X\}$

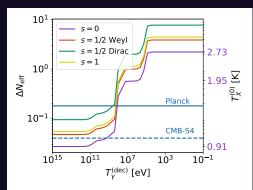

 $g_{*S}^{(dec)} \propto (T_X^0)^{-3}$

[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

Massive Light Relics: The basics Free Parameters: $\{m_X, T_X^{(0)}, g_X\}$

 $g_{*S}^{(dec)} \propto (T_X^0)^{-3}$

Minimal extensions $\implies T_X^0 \ge 0.91$ K.


[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

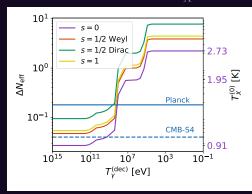
W. Linda Xu

Cosmological Measurements of Massive Light Relics

Key Quantities

• While relativistic, contributes to $\Delta N_{\rm eff}$

 $\Delta N_{\rm eff} \propto g_X (T_X^0)^4$


[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

W. Linda Xu

Key Quantities

• While relativistic, contributes to $\Delta N_{\rm eff}$

 $\Delta N_{\rm eff} \propto g_X (T_X^0)^4$ Planck $\Delta N_{\rm eff} \leq 0.36$ (95% CL) $\implies T_X^0 \leq 1.5$ K for X Weyl

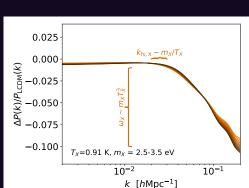
[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

W. Linda Xu

Cosmological Measurements of Massive Light Relic

Key Quantities

▶ Transition from radiation to matter \rightarrow free-streaming $k_{\text{fs},X}$


$$k_{\rm fs,X} \propto \frac{m_X/T_X^{(0)}}{\sqrt{1+z}}$$

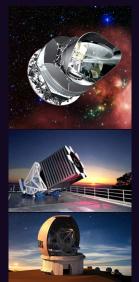
• As matter today, present-day abundance ω_X

 $\omega_X \propto g_X m_X (T_X^{(0)})^3$

Imprint on matter fluctuations

W. Linda Xu

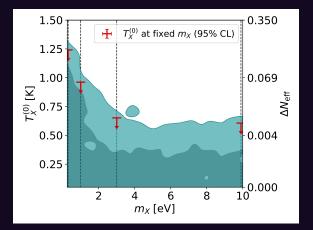
[WLX, Mũnoz, Dvorkin in prep]


Data/Experiments

Markov Chain Monte Carlo

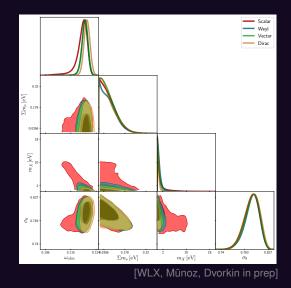
$$\{\omega_b, \omega_{cdm}, h, n_s, A_s, \tau, \sum m_{\nu}\} + \{m_X, T_X^{(0)}\}\$$

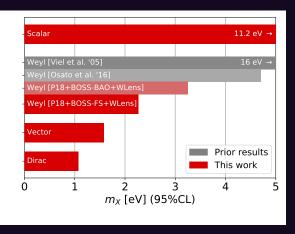
{Scalar, Weyl, Vector, Dirac}


- Planck 2018 TT+TE+EE
 +Lensing
- CFHTLens
- BOSS DR 12 (CLASS-PT)

[Chudaykin, Ivanov, Philcox, Simonović, 2004.10607]

So, are there LiMRs in our universe?


So, are there LiMRs in our universe?



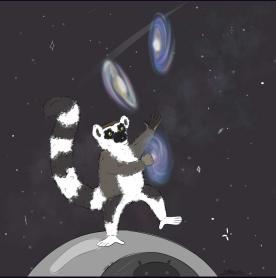
[WLX, Műnoz, Dvorkin in prep]

Cosmological Measurements of Massive Light Relic

[WLX, Műnoz, Dvorkin in prep]

Results & what we can learn from it

Light gravitinos in gauge-mediated SUSY breaking


$$m_X = \frac{\Lambda^2}{\sqrt{3}M_{pl}}, \quad T_X = 0.91 \text{ K}, \quad g_{X,\text{eff}} = 2$$

 $m_X < 2.26 \text{ eV} \implies \Lambda < 69.1 \text{ TeV}$

Results & where we have landed

Dark sectors are worth studying, in whole or in part

- There are reasons to care about LiMRs
- If so, cosmological data is uniquely powerful
- The first set of comprehensive constraints [coming soon!]
- Better data in the near future!

Thank you!

[Estella Lin, 20 Cosmological Measurements of Massive Light Relics