Higgs Physics at FCC-ee: mass and cross-section studies using ZH recoil

Jan Eysermans (Massachusetts Institute of Technology)

2021 Meeting of the Division of Particles and Fields of the American Physical Society (DPF21) - July 14 2021

Outline

FCCee and Higgs physics overview

Case study on Higgs mass and cross section measurement

- Overview and event selection
- Signal and background modelling
- Statistical analysis and systematics

FCCee overview

Current design

- e+/e- rings with ~ 100 km in circumference
- Colliding at 2 interaction points

Multiple energy points exploiting large range of physics (*)

- **Z-pole** 91.2 GeV, 4y ~ 150 /ab
 - \rightarrow estimates $\Delta m_7 \sim 100$ keV, $\Gamma_7 \sim 100$ keV
- **WW-pole** 161 GeV, 2y ~ 12 /ab
- \rightarrow estimates $\Delta m_W^2 \sim 0.3$ MeV, $\Gamma_Z^2 \sim 0.3$ MeV
- **H-pole** 240 GeV, $3y \sim 5 /ab \rightarrow This talk!$
- **tt-pole** 365 GeV, 5y ~ 1.5 /ab
 - → estimates Δm_{ton} ~ 20 MeV

→ Large constraints on SM EWK parameter space, narrowing down closure tests hence sensitive to new physics up to 70 TeV scale

(*) Data from FCCee CDR

Higgs physics at FCCee

Higgs-pole at 240 GeV

- Higgs–strahlung dominant: e⁺e⁻ → ZH
- Precise Higgs mass measurement up to ~O(MeV)
- Measurement of **decay-mode-independent xsec** up to % level, sensitive to new physics H → invisible
- Higgs width extracted from H → ZZ up to % level

Top threshold at 365 GeV

Opens significance for WW fusion: e⁺e⁻ → WWvv → Hvv

Combined performance at both energy points

- Higgs coupling precision < % level
- In particular, exotic Higgs decays constraint to < 1 %
- Probing CP violation using $H \rightarrow \tau \tau$ phase

Higgs mass and cross section estimates

Case study: estimate the Higgs mass and decay-mode independent cross-section

- Probe e⁺e⁻ → ZH → II + X at 240 GeV
- $Z \rightarrow \mu\mu$ considered for now (electron channel will be added)
- Backgrounds: dominated by vector boson (pair) production: WW, ZZ, Z/γ*
- Assess impact on dominant systematic uncertainties (both machine and detector)

Recoil mass: sharp peak at Higgs mass, width dominated by detector resolution

$$M_{recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$$

Sample production and analysis within official FCC framework

- Generators: Whizard+Pythia (signal) and Pythia (backgrounds); see backup
- Reconstruction with Delphes
- "IDEA" detector: silicon vertex detector + drift chambers embedded in 2T solenoid, double-readout copper calorimeter, μRwell muon chambers

Event selection

Muon object selection: $p_T > 10$ GeV, standard isolation and acceptance criteria

- Single μμ pair with charge 0
- 2. $86 < m(\mu\mu) < 96$ GeV: focus on Z-resonance kinematics phase space
- 3. $20 < p_T(\mu\mu) < 70$ GeV: signal mainly within this region, large suppression of $Z/\gamma^* \rightarrow II$
- 4. $|\cos(\theta_{missing})| < 0.98$: polar angle of missing momentum, effectively reduces γγ \rightarrow μμ,ττ (ISR collinear with beam pipe escaping

Recoil mass distribution

Mit

Additional cut on recoil mass distribution, focusing on 125 GeV recoil region: $120 < m_{rec} 140 \text{ GeV}$

- Signal exhibits sharp peak around ~ 125 GeV, width dominated by detector resolution effects, high-mass tail sensitive to ISR
- Smoothly falling background
- → Recoil at Z-peak allows to constrain and tune data/MC (can be used as control region with data)

Event yields

Ζ(μμ)Η	17405.28 ± 24.26		
Ζ(ττ)Η	11.6	± 0.6	
Z(ee)H	9.0	± 0.6	
Z(qq)H	165.9	± 3.4	
Z(vv)H	66.8	± 2.3	

$WW \rightarrow \mu\mu$	16194.4 ± 45.7
ZZ	10835.9 ± 85.8
$Z/\gamma^* \to II$	9269.3 ± 254.0
Rare (e(e)Z, $\gamma\gamma\rightarrow\mu\mu$, $\tau\tau$)	33.2 ± 2.2
Z/γ*→qq	0.0 ± 0.0
Total backgrounds	36333 ± 191

Signal modelling (1)

Correct signal modelling crucial to assess impact of shape on mass dependency and shape systematic uncs.

- Typically recoil models as (two-sided) Crystal-Ball, but does not describe well the Whizard recoil distributions (nor Pythia)
- Efforts to optimize and tune signal parameterization: new proposed PDF with 2 CBs + Gaussian to fit the tails

$$pdf_{rec} = cb_1CB(\mu, \sigma, \alpha_1, n_1) + cb_2CB(\mu, \sigma, \alpha_2, n_2) + Gauss(\mu_{gt}, \sigma_{gt})$$

New proposed PDF:

- 10 free params + norm
- High DOF
- Interpretation of params not straightforward (especially 2 mass terms)

Additional studies involving signal shape modelling with other MC generators (Sherpa)

Signal modelling (2)

Mit

How does the signal shape change as function of (true) Higgs mass mH?

- Generated extra samples around 125 GeV: 124.9, 124.95, 125.05, 125.1 GeV
- Found only significant dependency on the mean (both CB and Gauss) and yields
 - Dependency as function of mH described using Spline
- Other parameters set as constant (best-fit parameters @ 125.0 GeV, see backup for all fits)

Background modelling

Mit

Statistical treatment of backgrounds

- All backgrounds are merged
- Smoothly falling background modelled as third-order polynomial fit
- Keep polynomial coefficients constant, but keep total normalization floating
- Sufficient sample statistics for all backgrounds (~ 4x expected at 5 /ab),
 except for Z/γ*→II where slightly more MC is necessary

Likelihood scans

Statistical analysis performed using Combine, the CMS statistical framework developed in context of Higgs analyses (*)

- Signal and background analytical shapes are fitted to pseudo-data Asimov dataset (= randomized with mean=signal+background)
 - Injected 125.0 GeV signal with cross-section of 0.0067656 pb (ref)
 - Free parameters: signal norm, background norm and mH floating
- Likelihood scans to extract cross-sections and Higgs mass with robust uncertainties
- First, w/o accounting for experimental uncertainties → **stat-only result**

Stat-only uncertainties:

→ Cross-section: ~ 1.1 %

→ Higgs mass: 6.70 MeV

(*) The ATLAS, CMS Collaborations, and LHC Higgs Combination Group. Procedure for the LHC Higgs boson search combination in Summer 2011. Technical Report CMS-NOTE-2011-005. ATL-PHYS-PUB-2011-11, CERN, Geneva, Aug 2011

Systematic uncertainties (1)

Mir

Study of systematic uncertainties to assess the impact on the Higgs mass and cross-section measurement

- Uncertainties directly alter the recoil distribution shape and/or normalization
- Can be constrained with data, depending on source of uncertainty
- Considered uncertainties: BES, ISR, center-of-mass, muon momentum scale

1) Beam energy spread uncertainty (nominal BES: ± 0.165% = ± 198 MeV)

- Uncertainty driven by accelerator instrumentation: bunch length measurement up to 0.3 mm accuracy or better \rightarrow 6% BES uncertainty
- Data-driven BES constraining possible ee→ ff(γ); e.g. longitudinal momentum imbalance of dimuon spectrum and/or Bhabha during fill → estimated to be 1% BES uncertainty

Generated perturbed signal samples @ 125.0 GeV with:

- 6% BES variation: 2-3 % shape effect observed at mass peak
- 1% BES variation: negligible variation ~ within statistical uncertainty

Systematic uncertainties (2)

2) Initial State Radiation: ISR has impact on shape and normalization (xsec)

- ISR treatment in Whizard using structure function approach: photon p_T spectrum
 - either strict collinear approximation ($p_T = 0$)
 - or ad-hoc implementation of a physical spectrum (default sample)
- Generated perturbed sample in the strict collinear approximation
 - rather drastic → very conservative estimation of ISR uncertainty!
- Benchmarking against KKMC at Z-peak and/or Sherpa to obtain more realistic uncertainties for ISR treatment
- Can be constrained directly using data-driven techniques (including BES)

3) Center-of-mass: +/- 2 MeV

- √s parameter in the recoil mass definition → uncertainty induces ~ linear shift the recoil distribution
- Precision estimated to be 2 MeV at 240 GeV using radiative return events $Z \rightarrow II$ or $Z \rightarrow qq$

4) Muon momentum scale: relative scale uncertainty variation of 1e-5

- Directly affects $m(\mu\mu)$, hence shift in recoil mass
- Statistical potential to measure muon scale ~ 1e-6, but NMR probes so far limited to yield 1e-5 uncertainty

Systematic uncertainties (3)

Systematic variations included in likelihood as Gaussian constraint terms

- Inclusion of all systematics: $\Delta m_H = 7.98$ MeV and $\Delta \sigma = 1.92$ %
- Breakdown of uncertainties: vary systematics one by one, extract $\sigma^2_{\text{syst}} = \sigma^2_{\text{tot}} \sigma^2_{\text{stat}}$
- ISR dominant (but conservatively estimated), muon scale/ \sqrt{s} accounts for ~ 2 MeV on Δm_H
- Impact on cross-section limited, except ISR

Summary and outlook

FCCee programme delivers high-precision EWK measurements, constraining parameter space of the SM with high sensitivity for new physics and discovery potential

Presented case study ZH recoil analysis

- Extract Higgs mass and decay-mode independent cross-section with proper uncertainties
- Statistical analysis yields Higgs mass uncertainty 6.7 MeV, cross-section 1.1 % (stat-only)
- Inclusion of systematic uncertainties results into 8 MeV / 1.9% respectively, where ISR dominant but conservatively estimated

Outlook

- Benchmark ISR against KKMC/Sherpa and validate ISR treatment in Whizard
- Signal shape studies between Whizard and Sherpa
- Inclusion of electron channel

Backup

Signal and background samples

Monte-Carlo campaign ("Spring2021"):

- Center-of-mass 240 GeV, luminosity of 5 /ab
- ISR, FSR enabled, Beam Energy Spread (BES) set to 0.165% = ± 198 MeV (cfr. CDR)
- IDEA detector; detector response modelled with Delphes

Signal samples (Whizard+Pythia6)

- Z(μμ)H 0.0067656 pb
- Z(тт)H 0.0067518 pb
- Z(ee)H 0.0071611 pb
- Z(qq)H 0.13635 pb
- Z(vv)H 0.046191 pb
- → nominal Higgs mass 125.00 GeV
- → off-mass samples generated at +/- 50 and

+/- 100 MeV

Background samples (Pythia8)

- ZZ 1.35899 pb

- WW→μμ 0.25792 pb

- $Z/\gamma^* \rightarrow II$ 13.7787 pb

- $Z/\gamma^* \rightarrow qq$ 52.6539 pb

- e(e)Z (*) 0.20736 pb

- γγ \rightarrow μμ (*) 1.5523 pb [m_{qen}(μμ) > 60 GeV]

 $\gamma\gamma \to \tau\tau$ (*) 0.836 pb $[m_{gen}(\tau\tau) > 60 \text{ GeV}]$

(*) Generated with Whizard+Pythia6

IDEA detector configurations

Different IDEA detector configurations studied:

- Magnetic field increased from 2T to 3T
- → expected better momentum resolution
- FullSilicon tracker instead of drift chamber → degraded resolution due to enhanced multiple scattering, especially at low p_T and in the range relevant for this analysis
- Effect on mass scales with resolution, impact on cross-section uncertainty limited

Stat-only results

IDEA	Δm _H (MeV)	Δσ (%)
Nominal	6.70	1.07
FullSilicon	9.01	1.12
3T	5.78	1.06

Signal Fits with 2CBG

No bias in fits observed

Signal modelling with Pythia

Gauss tail mean: Spline vs. Linear

Cross-section unc.: -1.880/+1.937 %

Mass unc.: -7.946/+7.947 MeV

Cross-section unc.: -1.877/+1.934 %

Mass unc.: -7.881/7.864 MeV

Difference in mass uncertainty ~ 74 keV, cross-section negligible

Decomposition of PDF 2CBG

Signal PDF 1.00	0
-----------------	---

CB1 0.4580

CB2 0.4114

Gauss 0.1306

