

Search for resonant pair production of Higgs bosons in the 4b final state 13 TeV at ATLAS

Rui Zhang
University of Wisconsin-Madison, Wisconsin
Jul 12, 2021

Introduction

- Search for Higgs pair production is a major LHC physics goal
- Many models of BSM physics predict enhanced rates of Higgs
 - New resonances decaying to Higgs boson pairs
 - KK graviton Gkk, extended Higgs sectors H, radions, ...
- H→bb (58% in SM)
 - Largest cross section in 4b final states
 - Possible to probe boosted regime
 - Challenging due to huge QCD background
 - This talk will focus on new resonances searches

Paper link

 $g \sim 0000000$

g = QQQQQQQ

Analysis strategy

Two complementary analyses

Resolved Targets 260 GeV \leq m_{HH} \leq 1500 GeV Demands 4 b-tagged anti-kT R=0.4 jets pT > 40 GeV, $|\eta| < 2.5$, $\epsilon(b) = 70\%$ W.P.

Boosted
Targets 800 GeV \leq m_{HH} \leq 3 TeV
Demands 2 anti-k_T R=1.0 jets
p_{T1} > 450 GeV, p_{T2} > 250 GeV, | η | < 2

b-tagging performed using anti-k_T R=0.2 track-jets demand 1 or 2 b-tagged track-jets per large-R jet Three orthogonal samples based on number of track jets

- Data drive method is used for background estimation
 - m_{H1}-m_{H2} mass-plane is constructed to define the Signal Region (SR), Control Region (CR) and Sideband Region (SB)
 - Derive a "correction" from low-b-tag events to high-b-tag event in CR, and apply this correct to SR
 - m_{HH} is the discriminant.

Resolved analysis: additional selections

- ullet Combination of jets into Higgs boson candidates are found using D_{HH} and candidates must satisfy m4j-dependent requirement placed on ΔRjj
- Further selections based on:
 - p_T of Higgs boson candidates (m_{4j} -dependent) and $|\Delta \eta|$ between the Higgs candidates
- Consistency of candidates with m_H required using X_{hh}: $X_{hh} = \sqrt{\left(\frac{m_{2j}^{\text{lead}} 120 \,\text{GeV}}{0.1 m_{2j}^{\text{lead}}}\right)^2 + \left(\frac{m_{2j}^{\text{subl}} 110 \,\text{GeV}}{0.1 m_{2j}^{\text{subl}}}\right)^2} < 1.6$
- Hadronic top veto using X_{Wt} variable: $X_{Wt} = \sqrt{\left(\frac{m_W 80 \text{ GeV}}{0.1 m_W}\right)^2 + \left(\frac{m_t 173 \text{ GeV}}{0.1 m_t}\right)^2}$

Resolved analysis: background modelling

- Principal background is multijet, with ~5% tt
 - Contribution of backgrounds such as Z+jets, ZZ, ZH,
 H+jets and bbH were estimated to be negligible
 - Multijet modelling is entirely data-driven
 - tt normalisation is data-driven, shape is taken from MC-simulation
- Multijet background consists of various processes
 - MC insufficiently accurate or precise
- Use "2-tag sample" to model the background
 - Select events with 2 b-tagged jets, then combine with 2 randomly-selected non-b-jets to form Higgs candidates
 - 2-tag is not a priori a good model for the 4-tag background
 - different composition
 - kinematic effects of b-tagging and trigger efficiency

Resolved analysis: background modelling II

- Apply kinematic reweighting, based on ratio of 4-tag:2-tag data in five variables:
 - p_T of 2nd and 4th leading Higgs boson candidate constituent jets
 - $< |\eta| >$ of the constituent jets
 - $\Delta R(j,j)$ of the two closest constituent jets
 - $\Delta R(j,j)$ of the other two constituent jets
- Ratio is fitted using splines and an iterative reweighting is applied in order to account for correlations between the variables

Resolved analysis: systematics

Prefit uncertainty in percentage

		2015	5	2016				
Source	Background	Scalar	SMHH	$G_{ m KK}$	Background	Scalar	SM HH	$G_{ m KK}$
Luminosity	_	2.1	2.1	2.1	_	2.2	2.2	2.2
Jet energy	_	17	7.1	3.7	_	17	6.4	3.7
b-tagging	_	13	12	14	_	13	12	14
<i>b</i> -trigger	_	4.0	2.3	1.3	_	2.6	2.5	2.5
Theoretical	_	23	7.2	0.6	_	23	7.2	0.6
Multijet stat	4.2	_	_	_	1.5	_	_	_
Multijet syst	6.1	_	_	_	1.8	_	_	_
$t\bar{t}$ stat	2.1	_	_	_	0.8	_	_	_
$t\bar{t}$ syst	3.5	_	_	_	0.3	_	_	_
Total	7.5	31	16	15	1.8	31	16	15

- Signal uncertainties dominated by b-tagging
- Statistical uncertainties (including correlations) on the background normalisation are propagated to final
- Background shape uncertainties assessed using an alternative model using CR rather than sideband
 - Alternative model in good agreement with baseline and data
 - Uncertainty split to two components, to avoid over-constraints

Boosted analysis: background modelling

- Principal background is multijet, while proportion of t\u00e4
 varies from 5-20% with number of b-tagged track jets
 - Again, contribution of backgrounds such as Z+jets, ZZ, ZH, H+jets and bbH were estimated to be negligible
 - Multijet modelling is entirely data-driven
 - tt̄ normalisation is data-driven, shape is taken from MC-simulation
- Use lower-tagged data to model background in ntagged regions
- Iterative reweighting is applied, based on three variables:
 - p_T of leading large-R jet
 - p_T of leading track-jet in both large-R jets
- Normalisation of multi jet and tt are set in each sample by a fit to m_Jlead

Boosted analysis: systematics

Prefit uncertainty in percentage

	Two-tag split		Thre	e-tag	Four-Tag		
Source	Background	G_{KK}^{*} (2 TeV)	Background	G_{KK}^{*} (2 TeV)	Background	G_{KK}^{*} (2 TeV)	
Luminosity	-	2.1	-	2.1	-	2.1	
JER	0.3	0.7	1.4	0.9	0.5	1.1	
JMR	0.5	12	1.4	12	7.9	13	
JES/JMS	0.4	1.7	2.0	1.9	1.3	3.7	
<i>b</i> -tagging	0.8	27	0.5	2.0	1.1	28	
Bkg Est	2.8	-	5.8	-	16	-	
Statistical	0.6	1.2	1.3	1.0	3.1	1.6	
Total Sys	3.0	30	6.6	13	18	32	

- Largest signal systematic arises from b-tagging, followed by JMR
- b-tagging impact suppressed in 3-tag sample because variation affects both tagged and non-tagged jets
- Normalisation statistical uncertainties propagated from m_Jlead fit
- Normalisation systematic uncertainty arises from control region variations: largest
 - data/prediction discrepancy taken as uncertainty
- Shape uncertainty from comparison in control region, split into two components

Discriminant

Resolved

Observed data is in agreement with predicted background.

Results

- 95% C.L. exclusions of Bulk RS model
 - $320 \text{ GeV} < m_{G^*} < 1400 \text{ GeV for k/MPl} = 1$
 - $260 \text{ GeV} < m_{G^*} < 1850 \text{ GeV for k/Mpl} = 2$

Summary

- Search for resonant Higgs boson pair production in the 4b channel is presented using 2015+2016 ATLAS data
 - A search with full Run2 data (2015-2018) is currently ongoing
- No significant excess of data above predicted background was observed
- Cross-section limits were set on spin-0 and spin-2 signals between 260 and 3000 GeV

Backup

Resolved

Boosted analysis: selection

- Requirement that leading large-R jet $p_T > 450$ GeV ensures 100% trigger efficiency
 - Veto events that passed resolved selection
- R=0.2 track-jets for b-tagging must satisfy p_T > 10 GeV, $|\eta|$ < 2.5
- Maximise sensitivity by considering three orthogonal samples
 - Events containing either 2, 3 or 4 b-tagged track-jets matched to Higgs boson candidates

Tables

	-		-				
Sample	2015 SR		20	16 SR	2015 CR	2016 CR	
Multijet	866	±70	6750	± 170	880 ± 71	7110 ± 180	
$t\bar{t}$, hadronic	52	± 35	259	± 57	56 ± 37	276 ± 61	
$t\bar{t}$, semileptonic	13.9	± 6.5	123	± 30	20 ± 9	168 ± 40	
Total	930	±70	7130	± 130	956 ± 50	7550 ± 130	
Data	928		7430		969	7656	
$G_{\rm KK}$ (800 GeV)	12.5	± 1.9	89	± 14			
Scalar (280 GeV)	24.0	± 7.5	180	± 57			
SM HH	0.607 ± 0.091		4.43 ± 0.66				

Resolved

		;	2016					
Source	Background	Scalar	SM HH	$G_{ m KK}$	Background	Scalar	SM HH	$G_{ m KK}$
Luminosity	_	2.1	2.1	2.1	_	2.2	2.2	2.2
Jet energy	_	17	7.1	3.7	_	17	6.4	3.7
b-tagging	_	13	12	14	_	13	12	14
b-trigger	_	4.0	2.3	1.3	_	2.6	2.5	2.5
Theoretical	_	23	7.2	0.6	_	23	7.2	0.6
Multijet stat	4.2	_	_	_	1.5	_	_	_
Multijet syst	6.1	_	_	_	1.8	_	_	_
$t\bar{t}$ stat	2.1	_	_	_	0.8	_	_	_
$t\bar{t}$ syst	3.5	_	_	-	0.3	_	_	_
Total	7.5	31	16	15	1.8	31	16	15

Boosted

	Two-tag	Three-tag	Four-tag	
Multijet	3390 ± 150	702 ± 63	32.9 ± 6.9	
$tar{t}$	860 ± 110	80 ± 33	1.7 ± 1.4	
Total	4250 ± 130	782 ± 51	34.6 ± 6.1	
$G_{\rm KK}$ (2 TeV)	$0.97 \pm 0.$	$29 1.23 \pm 0.16$	0.40 ± 0.13	
Scalar (2 TeV)	$28.2 \pm 9.$	$0 35.0 \pm 4.6$	10.9 ± 3.5	
Data	4376	801	31	

	Two-tag			Thr	ee-tag		Four-tag		
Source	Background	$G_{ m KK}$	Scalar	Background	$G_{ m KK}$	Scalar	Background	$G_{ m KK}$	Scalar
Luminosity	-	2.1	2.1	-	2.1	2.1	-	2.1	2.1
JER	0.25	0.74	1	1.4	0.93	0.93	0.45	1.1	1.5
JMR	0.52	12	12	1.4	12	13	7.9	13	14
JES/JMS	0.43	1.7	2.1	2.0	1.9	2.2	1.3	3.7	5.7
<i>b</i> -tagging	0.83	27	29	0.48	2	2.9	1.1	28	28
Bkgd estimate	2.8	-	-	5.8	-	-	16	-	-
Statistical	0.6	1.2	1.3	1.3	1.0	1.1	3.1	1.6	1.9
Total Syst	3.1	30	32	6.6	13	14	18	31	32