Search for the Higgs boson decaying to a pair of muons in pp collisions at 13 TeV with the ATLAS detector

Jay Chan

University of Wisconsin-Madison

DPF2019, Virtual Conference

July 15, 2021

Jay Chan (Wisconsin)

$H \rightarrow \mu \mu$

- Predicted by SM via Yukawa coupling, but...
 - SM is not perfect (various experimental results can't be explained, e.g. DM, flavor hierarchy of fermion mass, muon g-2, etc)
 - BSM often modify Higgs coupling to muons
 - Experiments only observed Higgs coupling to 3^{rd} -generation fermions (H $\rightarrow \tau \tau$ /bb, ttH), while no observation of Higgs coupling to 2^{nd} -generation fermions yet
- $H \rightarrow \mu\mu$ search has become the next milestone in the LHC programs!

 $\mathcal{J} =$ + iXBX + h.c. + $\chi_i \mathcal{Y}_{ij} \chi_j \phi$ + $+ \left| \mathcal{D} \mathcal{A} \right|^2 - \sqrt{\mathcal{A}}$

202

$H \rightarrow \mu \mu$

- Very small branching ratio $\sim 2 \times 10^{-4}$
 - = $1/290 \times Br(H \rightarrow \tau\tau) = 1/130 \times Br(H \rightarrow cc)$
- Large background (mainly Drell-Yan)
- Good muon reconstruction and resolution

 Low systematic uncertainties

• $H \rightarrow \mu\mu$ currently provides the best opportunity for probing the Higgs coupling to 2nd-generation fermions

Background

- Main background: Drell-Yan process (>90%)
- tt

 and diboson
 become important in
 VH/ttH phase space

July 15, 2021

- Major challenge: very small S/B (< 0.1%)
 - Hard to find signals (requires good separation between signals and background)
 - Result easily biased by background mismodeling (requires careful background modeling procedure)

Outline

- BDT-based event categorization
- Signal and background modeling
- Results

Signal signatures: select events containing two isolated muons with opposite charges

Production driven categorization

BDT classifier

 Also utilize number of tracks inside the two leading jets – useful to distinguish quark/gluon jets and VBF events

July 15, 2021

- Dedicated BDTs are trained for different production modes and phase space
 - Key to further separate the signal from background
 - Mainly employ kinematic variables of di-jet system, jets, etc

BDT categorization for ggF/VBF categories

BDT categorization for ggF/VBF categories

 $\mathsf{O}_{\mathsf{VBF}}$

VBFs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.2

0.1

BDT categorization for ggF/VBF categories

 Rest of the events sorted by O-Jet/1-Jet/≥2-Jet ggF BDT into 4 ggF categories each (12 ggF categories in total)

DPF

202

July 15, 2021

Summary of categories

Category	$gg\mathrm{F}$	VBF	WH	ZH	$t\bar{t}H$
VBF Very High	6.6%	93.3%	0.0%	0.0%	0.0%
VBF High	12.8%	87.1%	0.0%	0.0%	0.0%
VBF Medium	21.3%	78.5%	0.1%	0.1%	0.0%
VBF Low	34.8%	64.8%	0.2%	0.2%	0.0%
2-jet Very High	82.0%	15.7%	1.2%	1.0%	0.2%
2-jet High	79.3%	16.0%	2.7%	1.8%	0.3%
2-jet Medium	80.7%	10.4%	5.4%	3.0%	0.5%
2-jet Low	78.2%	6.6%	8.8%	4.9%	1.5%
1-jet Very High	78.2%	21.2%	0.3%	0.3%	0.0%
1-jet High	88.2%	10.4%	0.9%	0.6%	0.0%
1-jet Medium	91.4%	6.1%	1.6%	0.9%	0.0%
1-jet Low	92.4%	3.8%	2.6%	1.2%	0.0%
0-jet Very High	94.1%	2.5%	1.4%	2.0%	0.0%
0-jet High	98.3%	1.0%	0.4%	0.3%	0.0%
0-jet Medium	99.1%	0.6%	0.2%	0.1%	0.0%
0-jet Low	99.5%	0.3%	0.1%	0.1%	0.0%
VH4L	0.0%	0.0%	0.1%	99.5%	0.4%
VH3LH	0.3%	0.1%	96.9%	2.6%	0.1%
VH3LM	4.2%	1.0%	80.8%	8.6%	5.3%
$t\bar{t}H$	0.1%	0.0%	1.5%	0.4%	98.0%

• 20 categories in total

• Different Higgs production modes are well separated

July 15, 2021

Outline

• BDT-based event categorization

• Signal and background modeling

• Results

Signal modeling

- Signal shape (also background) modeled with analytical functions
 - Often asymmetric in the $m_{\mu\mu}$ spectrum due to the detector resolution effect
- Parametrized with a double-sided Crystal Ball function (Gaussian + power-law tails) for each category using full-simulation MC signal samples
 - Gaussian width varies between
 2.6 and 3.2 GeV (much larger than natural width ~4 MeV!)

- Main systematic uncertainties:
 - μ momentum scale and resolution
 - Missing higher order QCD correction
 - Underlying event and parton showering

July 15, 2021

Background modeling

- Major challenge due to the very low S/B ratio
- Mainly focus on the non-trivial shape of the DY $m_{\mu\mu}$ spectrum: model with (Core) × (Empirical)

- Core function: LO DY line-shape convolved with the Gaussian muon resolution function
 - All parameters are fixed
- Empirical function: Power-law or Epoly functions (different in each category)
 - With free parameters to absorb the mismodeling from the core function
- Function choices are selected based on spurious signal test procedure with high statistics simulation

Spurious signal test

- Evaluate the background modeling bias by performing a S+B fit to the simulation background
 - Resulting S is the "spurious signal" (SS)
- Selected functions must pass the fit quality criteria:
 - SS < 20% of expected statistical uncertainty in data
 - X² p-value > 1% for B-only fits to simulation background and data sideband

 Eventually SS in each category is taken as a background modeling uncertainty

Outline

• BDT-based event categorization

• Signal and background modeling

• Results

Observed dimuon mass spectrum

• Fit to the $m_{\mu\mu}$ spectrum in data in all 20 categories simultaneously

 ∞

m

φ

Observed dimuon mass spectrum

- Sum of events from all 20 categories
- Events and pdfs are weighted by ln(1+S/B) in each category to reflect the sensitivity after the categorization

202

Signal strength, significance and upper limit

- Signal strength (observed signal yield / SM prediction):
 - $1.2 \pm 0.6 \ (\pm 0.6(\text{stat.}) \stackrel{+0.2}{_{-0.1}}(\text{syst.}))$
- Significance against no $H \rightarrow \mu \mu$ signal hypothesis:
 - 2.0σ observed, 1.7σ expected
- Observed upper limit @ 95% CL:
 - Br(H \rightarrow µµ) < 4.7×10⁻⁴ = 2.2×SM
 - 2.0×SM expected (W/ $H \rightarrow \mu\mu$ signal)
 - 1.1×SM expected (W/O H \rightarrow µµ signal)

202

Signal strength, significance and upper limit

- Signal strength (observed signal yield / SM prediction):
 - $1.2 \pm 0.6 \ (\pm 0.6(\text{stat.}) \stackrel{+0.2}{_{-0.1}}(\text{syst.}))$
- Significance against no $H \rightarrow \mu \mu$ signal hypothesis:
 - 2.0σ observed, 1.7σ expected
- Observed upper limit @ 95% CL:
 - Br(H \rightarrow µµ) < 4.7×10⁻⁴ = 2.2×SM
 - 2.0×SM expected (W/ $H \rightarrow \mu\mu$ signal)
 - 1.1×SM expected (W/O H \rightarrow µµ signal)

202

Signal strength, significance and upper limit

- Signal strength (observed signal yield / SM prediction):
 - $1.2 \pm 0.6 \ (\pm 0.6(\text{stat.}) \stackrel{+0.2}{_{-0.1}}(\text{syst.}))$
- Significance against no $H \rightarrow \mu \mu$ signal hypothesis:
 - 2.0 σ observed, 1.7 σ expected
- Observed upper limit @ 95% CL:
 - Br(H \rightarrow µµ) < 4.7×10⁻⁴ = 2.2×SI
 - 2.0×SM expected (W/ $H \rightarrow \mu\mu$ s
 - 1.1×SM expected (W/O H \rightarrow µµ signar)

0 155 160 m_{uu} [GeV]

150

- ~2.5 improvement compared to previous results with 36 fb⁻¹ (<u>Phys. Rev. Lett. 119 (2017)</u> 051802)
 - ~25% due to better analysis techniques

125

130

135 140 145

115

120

202

Signal strength, significance and upper limit

- Signal strength (observed signal yield / SM prediction):
 - $1.2 \pm 0.6 \ (\pm 0.6(\text{stat.}) \stackrel{+0.2}{_{-0.1}}(\text{syst.}))$
- Significance against no $H \rightarrow \mu \mu$ signal hypothesis:
 - 2.0σ observed, 1.7σ expected
- Observed upper limit @ 95% CL:
 - $Br(H \rightarrow \mu\mu) < 4.7 \times 10^{-4} = 2.2 \times SM$
 - 2.0×SM expected (W/ $H \rightarrow \mu\mu$ signal)
 - 1.1×SM expected (W/O H \rightarrow µµ signal)

2021

Conclusion

- $H \rightarrow \mu\mu$ decay channel provides the best opportunity for probing the interactions between Higgs boson and the second-generation fermions.
- ATLAS measured $H \rightarrow \mu\mu$ decay with full Run2 data (139 fb⁻¹)
 - Observed significance is 2.0σ (1.7σ expected)
 - Signal strength is 1.2 ± 0.6 (wrt SM)
 - Br(H \rightarrow µµ) < 4.7×10⁻⁴ (@ 95 CL) = 2.2×SM
- Results currently compatible with Standard Model prediction and statistically limited
 - Looking forward to future results with more data!

Backup slides

Outlook

- CMS has observed 3σ significance for $H\!\rightarrow\!\mu\mu$ with LHC full run-2 data
 - A simple combination between ATLAS and CMS is $\sqrt{2.0^2 + 3.0^2} = 3.6\sigma$ (assuming no correlation between two experiments)

The ATLAS and CMS experiments at CERN have announced new results which show that the Higgs boson decays into two muons

3 AUGUST, 2020

Candidate event displays of a Higgs boson decaying into two muons as recorded by CMS (left) and ATLAS (right). (Image: CERN) Geneva. At the <u>40th ICHEP conference</u>, the <u>ATLAS</u> and <u>CMS</u> experiments announced new results which show that the <u>Higgs boson</u> decays into two muons. The muon is a heavier copy of the electron, one of the elementary particles that constitute the matter content of the Universe. While electrons are classified as a first-generation

- Expected integrated luminosity with LHC run-3: ~300 fb-1
 - Data statistics increased ~2 times
 - Sensitivity increased $\sim \sqrt{2} \sim 1.4$
 - Possibility of reaching 5σ observation!

Projection based on current expected significance

- ATLAS (CMS) expected 1.7 σ (2.5 σ) significance for H $\rightarrow\mu\mu$ with LHC full run-2 data
 - A simple combination between ATLAS and CMS is $\sqrt{1.7^2 + 2.5^2} = 3.0\sigma$ (assuming no correlation between two experiments)
- Expected integrated luminosity with LHC run-3: \sim 300 fb-1
 - Data statistics increased ~2 times
 - Sensitivity increased by $\sim\sqrt{2} \sim 1.4$
 - Expected significance = $3\sigma \times 1.4 = 4.2\sigma$

DPF

2021

Fitted signal and background yields in each category

Category	Data	$S_{ m SM}$	S	В	S/\sqrt{B}	S/B~[%]
VBF Very High	15	2.81 ± 0.27	3.3 ± 1.7	14.5 ± 2.1	0.86	22.6
VBF High	39	3.46 ± 0.36	4.0 ± 2.1	32.5 ± 2.9	0.71	12.4
VBF Medium	112	4.8 ± 0.5	5.6 ± 2.8	85 ± 4	0.61	6.6
VBF Low	284	7.5 ± 0.9	9 ± 4	273 ± 8	0.53	3.2
2-jet Very High	1030	17.6 ± 3.3	21 ± 10	1024 ± 22	0.63	2.0
2-jet High	5433	50 ± 8	58 ± 30	5440 ± 50	0.77	1.0
2-jet Medium	18311	79 ± 15	90 ± 50	18320 ± 90	0.66	0.5
2-jet Low	36409	63 ± 17	70 ± 40	36340 ± 140	0.37	0.2
1-jet Very High	1097	16.5 ± 2.4	19 ± 10	1071 ± 22	0.59	1.8
1-jet High	6413	46 ± 7	54 ± 28	6320 ± 50	0.69	0.9
1-jet Medium	24576	90 ± 11	100 ± 50	24290 ± 100	0.67	0.4
1-jet Low	73459	125 ± 17	150 ± 70	73480 ± 190	0.53	0.2
0-jet Very High	15986	59 ± 11	70 ± 40	16090 ± 90	0.55	0.4
0-jet High	46523	99 ± 13	120 ± 60	46190 ± 150	0.54	0.3
0-jet Medium	91392	119 ± 14	140 ± 70	91310 ± 210	0.46	0.2
0-jet Low	121354	79 ± 10	90 ± 50	121310 ± 280	0.26	0.1
VH4L	34	0.53 ± 0.05	0.6 ± 0.3	24 ± 4	0.13	2.6
VH3LH	41	1.45 ± 0.14	1.7 ± 0.9	41 ± 5	0.27	4.2
VH3LM	358	2.76 ± 0.24	3.2 ± 1.6	347 ± 15	0.17	0.9
$t\bar{t}H$	17	1.19 ± 0.13	1.4 ± 0.7	15.1 ± 2.2	0.36	9.2

DPF 2021

Jay Chan (Wisconsin)

List of systematic uncertainties

- Theoretical effects
 - Missing higher-order QCD corrections
 - Parton distribution functions
 - Underlying events and hadronization
 - Higgs decay branching ratio and cross-section
- Experimental effects
 - muon reconstruction and identification efficiencies
 - Trigger efficiency
 - Isolation and impact parameter requirements
 - Muon momentum scale and resolution
 - MET calculation
 - b-tagging efficiency
 - Number of tracks associated with jets
 - Pile-up modelling
 - Electron reconstruction and identification efficiency
- Jet reconstruction efficiency, energy scale and resolution July 15, 2021 Jay Chan (Wisconsin)

Impacts of systematic uncertainties

Jay Chan (Wisconsin)

DPF 2021

Jay Chan (Wisconsin)

Muon reconstruction

- Muons are mainly reconstructed from inner detector and muon spectrometer
- Muon momentum resolution is mostly limited by inner detector in the $H \rightarrow \mu\mu$ kinematic phase space ($p_{\mu}^{T} < 60 \text{ GeV}$)

Barrel semiconductor tracker

• Resolution typically at 1~2%

Pixel detectors

Barrel transition radiation tracker

End-cap transition radiation tracker

End-cap semiconductor tracker

6.2m

July 15, 2021

2.1m <

DPF

2021

202

Final State Radiation recovery

- Muon may lose a significant amount of energy due to QED final state radiation H ~
- Include up to 1 final state photon for each event in $m_{\mu\mu}$ calculation to improve signal reconstruction
 - $\Delta R(\gamma,\mu) < 0.2$
 - $p_{\rm T}^{\gamma}$ threshold increases linearly with $\Delta {\rm R}(\gamma,\mu)$ from 3 to 8 GeV to supress pile-up background
- $m_{\mu\mu}$ resolution improved by ~3%

202

Dimuon event selections

- Passing single-muon triggers
- Having two muons with opposite charges
- Muon $p_T > 6 \text{ GeV}$
- Muon $\eta < 2.7$
- Passing loose muon identification criteria based on particle tracks
- Passing isolation requirement to suppress hadronic activities

• Further selections for different Higgs production phase spaces

Jay Chan (Wisconsin)

ttH category

- Target leptonic and semi-leptonic decays from $t\bar{t}$
 - Require at least 1 additional lepton (μ /e) and at least 1 b-jet
 - Leading (sub-leading) muon $p_{T} > 27$ (15) GeV

- BDT model trained to distinguish ttH signal against SM background with 12 event kinematic variables
- The ultimate ttH category is defined with BDT output $(O_{t\bar{t}H}) > 0.35$

Jay Chan (Wisconsin)

July 15, 2021

VH categories

- 3-lepton channel targets WH production in leptonic decay
 - Exactly 3 leptons
 - No b-jet and no Z candidate*
 - Leptons p_T > 27, 10, 10(15) GeV for μ(e)

- 4-lepton channel targets ZH production in leptonic decay
 - > 4 leptons
 - No b-jet and
 < 2 Z candidates*
 - Leptons $p_T > 27$, 15, 8, 6 GeV

- Dedicated muon pairing if more than 2 muons
 - Two muons are paired to form the Higgs candidate by minimizing the χ^2 difference between reconstructed and expected mass values of the Higgs and W/Z bosons

$$\chi^{2} \equiv \left(\frac{m_{H}^{reco.} - m_{H}^{exp.}}{\sigma_{H}}\right)^{2} + \left(\frac{m_{W/Z}^{reco.} - m_{W/Z}^{exp.}}{\sigma_{W/Z}}\right)^{2}$$

- $\sigma_{H(W)(Z)}$ is the expected mass resolution of H(W)(Z)
- 97(93)% correct pairing for 3μ(>4μ) cases

* Z = dimuon with $m_{\mu\mu}$ = 80-105 GeV

Jay Chan (Wisconsin)

BDT for VH categories

- 2 BDTs trained for 3-lepton and 4-lepton channels
- Ultimate VH4L category defined by a BDT cut
- 3-lepton channel split to 2 subcategories by BDT

- 8 variables used to train the BDT for 3-lepton channel
- WH as training signal and SM background as training background July 15, 2021
- 7 variables used to train the BDT for 4-lepton channel
- ZH as training signal and SM background as training background

BDT training variables

- <u>ttH:</u>
 - $\cos \theta^*$, $p_{T(\mu\mu)}$, $p_{T(I3)}$, $p_{T(I4)}$, $m_{leptonic top}$, $m_{leptonic W}$, $m_{hadronic top}$, $m_{(I3,I4)}$, $m_{(\mu^3, \mu^*)}$, $N_{central jet}$, N_{bjet} , H_T , $\mu^*=opposite charge muon from Higgs candidate$
- <u>VH3L:</u>
 - $m_{leptonic W}$, $p_{T(I3)}$, $\Delta \Phi_{(I3, H)}$, $\Delta \eta_{(I3, H)}$, $p_{T(j1)}$, MET, $\Delta \Phi_{(MET, H)}$, n_{j}
- <u>VH4L:</u>
 - $p_{T(j1)}$, $p_{T(j2)}$, n_{j} , $\Delta \Phi_{I3, I4}$, $\Delta \Phi_{Z, H}$, $\Delta \eta_{Z, H}$, m_{Z}
- ggF/VBF:
 - $\cos \theta^*$, $p_{T(\mu\mu)}$, $Y_{\mu\mu}$, $p_{T(j1)}$, η_{j1} , $\Delta \Phi_{j1, \mu\mu}$, $N_{track}^{j_1}$, $p_{T(j2)}$, η_{j2} , $\Delta \Phi_{j2, \mu\mu}$, $p_{T(jj)}$, Y_{jj} , $\Delta \Phi_{jj, \mu\mu}$, m_{jj} , MET, H_T , $N_{track}^{j_2}$

Note: $n_j \ge 1$ $n_j \ge 2$

Variable definition

- m_{leptonic top}: transverse mass of the 3rd lepton, MET and b-jet
- m_{leptonic W}: transverse mass of the lepton and MET

• $\cos \theta^*$: lepton decay angle in the Collins–Soper frame

$$\cos \theta^* = \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{\sqrt{m_{\ell\ell}^2 (m_{\ell\ell}^2 + p_{\mathrm{T},\ell\ell}^2)}} \frac{p_{Z,\ell\ell}}{|p_{Z,\ell\ell}|}$$

$H \rightarrow \mu \mu$ object preselection

Muons	Electrons	Jets		
 Loose working point 	Medium likelihood working	Antikt4PFlowEM algorithm		
• FixedCutPflowLoose isolation	point	• PT > 25 GeV for $ \eta $ < 2.4		
• pT > 6 GeV	 FCLoose isolation 	PT > 30 GeV for 2.4 < $ \eta $ < 4.5		
• η < 2.7	• PT > 7 GeV	• $JVT > 0.59$ for $ n < 2.4$ and 20 < $nT < 120$		
 Impact parameters: 	• $ \eta < 2.47$	JVT > 0.11		
d0 significance < 3.0	$1.37 < \eta < 1.52$	for 2.4 < $ \eta $ < 2.5 and 20 < pT < 120		
	 Impact parameters: 	• b-tagging:		
	d0 significance < 5.0	MV2c10 60% working point for ggF/VBF		
	$ZO \sin\theta < 0.5 mm$	MV2c10 85% working point for VH/ttH		
 Impact parameters: d0 significance < 3.0 Z0 sinθ < 0.5 mm 	 η < 2.47 (excluding crack region 1.37 < η < 1.52) Impact parameters: d0 significance < 5.0 Z0 sinθ < 0.5 mm 	JVT > 0.11 for 2.4 < $ \eta $ < 2.5 and 20 < pT < 120 • b-tagging: MV2c10 60% working point for ggF/VBF MV2c10 85% working point for VH/ttH		

$H \rightarrow \mu \mu$ event selections

- GRL and event cleaning for data
- Trigger and trigger matching:
 - 2015: HLT_mu20_iloose_L1MU15 or HLT_mu50
 - 2016/17/18: HLT_mu26_ivarmedium or HLT_mu50

	ggF/VBF	VH 3lep	VH 4lep	ttH
•	Exactly 2 opposite charge	• Exactly 3 leptons	• At least 4 leptons	• 1 oppositely-charged
	muons	• At least 1 oppositely-	• At least 1 oppositely-	muon pair
•	Leading (subleading)	charged muon pair	charged muon pair	Leading (subleading)
	muon pT > 27 (15) GeV	• b-jet veto (85%)	• b-jet veto (85%)	muon pT > 27 (15) GeV
•	b-jet veto (60%)	• $N_z = 0$	• N _z < 2	• 1 additional μ /e with pT
•	No ttH, no VH	• Leptons pT > 27, 10, 10(15) GeV for $\mu(e)$	 Leptons pT > 27, 15, 8, 6 GeV 	> 15 GeV • $N_{bjet} \ge 1$ (85%)

Exclusive categories with highest priority on the right