Search for non-resonant di-Higgs production in the $HH \rightarrow bb\gamma\gamma$ decay channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Alex Wang

University of Wisconsin

DPF 2021

July 12, 2021

- Analysis introduction
- Event selection and categorization
- Results
- Summary

Introduction

- One of the goals of LHC physics is to observe di-Higgs (HH) production as a probe of the Higgs boson self-coupling
- Non-resonant di-Higgs production proceeds mainly through gluonfusion (ggF) from two leading order diagrams

- In the SM, these diagrams interfere destructively and lead to a small production cross-section of 31 fb
- BSM modifications to the self-coupling $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ can result in much higher cross-sections
- The next largest production mode is from **vector-boson fusion (VBF)** but with a much smaller cross-section (1.7 fb in the SM)

Introduction

- $bb\gamma\gamma$ is one of the top three *HH* channels in sensitivity: combine large $H \rightarrow bb$ branching ratio with excellent ATLAS photon resolution
- Reminder of 36 fb⁻¹ $bb\gamma\gamma$ search: JHEP 11 (2018) 040
 - 95% CL upper limit on SM cross section: 22 * SM

Kλ

- Today: show the latest $HH \rightarrow bb\gamma\gamma$ result with the full ATLAS Run 2 dataset of 139 fb⁻¹ (<u>ATLAS-CONF-2021-016</u>)
- Highlight: reoptimized event selection w.r.t. previous result

07/12/2021, DPF2021

Observed

----- Expected

ATLAS

√s = 13 TeV, 27.5 - 36.1 fb⁻¹

- Analysis introduction
- Event selection and categorization
- Results
- Summary

Event selection strategy (1)

- Events with two photons and two b-jets are selected
- Events are divided into a high mass (targeting SM-like signals) and low mass region (targeting non SM-like signals) using the modified 4-body mass to improve resolution

$$m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} - (m_{bb} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$$

Event selection strategy (2)

- In each region a Boosted Decision Tree (BDT) is trained on MC to separate HH signals from continuum γγ + single H background to obtain four signal-sensitive categories
- For various signal hypotheses, obtain final results from a signal + background fit to $m_{\gamma\gamma}$ in data in **all four** categories

BDT input variables

- Plots for shape comparison only
- data sideband used to validate γγ MC

- BDT is trained using a variety of photon and jet-related input variables to reject the different types of backgrounds
- Some of the most powerful variables in the high mass region:
- Left: Mass of the *bb* system is very powerful see sharp peaks for *HH* and *ZH*
- Right: Missing E_T is good against ttH

Alex Wang (Wisconsin)

BDT output

- Good separation between *HH* signal and backgrounds
- Data sideband agrees well with $\gamma\gamma$ MC used for training
- Both $\kappa_{\lambda} = 1$ and $\kappa_{\lambda} = 10 HH$ samples are signal like, since BDT is not designed to distinguish between different signals

Category purity & significance

- Largest single Higgs backgrounds are from *ttH*, *ggH*, *ZH*
- For the SM signal, the sensitivity is mainly due to the High mass BDT tight category
- Next: the results with the categories

Alex Wang (Wisconsin)

- Analysis introduction
- Event selection and categorization
- Results
- Summary

Signal + background modeling

- Modeling is done independently in each of the four analysis categories
- *HH* signal + *H* background: normalization and shape determined from a double sided crystal ball (DSCB) fit to MC

				Work in Progress		-
Size of smallest	Category	$\rightarrow \sigma_{68} [\text{GeV}]$		Ţ	•	
mass window	High mass BDT tight	1.46 ± 0.01	0.06	•	•	-
containing 68%	High mass BDT loose	1.61 ± 0.02	0.04		ale .	-
of the signal	Low mass BDT tight	1.72 ± 0.06	0.02	1		-
	Low mass BDT loose	1.81 ± 0.03				
			116 11	8 120 122 124	126 128 130	132 134
						m _{vv} [GeV]

- Non-resonant $\gamma\gamma$ background: normalization and shape determined from a fit to $m_{\gamma\gamma}$ using an analytical (exponential) function
- This is completely data-driven, except for potential bias resulting from specific choice of function: **spurious signal**

Systematic uncertainties

- **Spurious signal** is estimated from a signal + background fit to a background-only MC template
- This test also confirms that the BDT selection does not create any "bump" in the $m_{\gamma\gamma}$ spectrum due to choice of input variables
- In general the analysis is almost completely statistically dominated with the Run 2 dataset

Source	Туре	Non-resonant analysis HH			
Experimental					
Photon energy scale Photon energy resolution Flavor tagging	Norm. + Shape Norm. + Shape Normalization	5.2 1.8 0.5			
Theoretical					
Heavy flavor content Higgs boson mass PDF+ α_s	Normalization Norm. + Shape Normalization	1.5 1.8 0.7			
Spurious signal	Normalization	5.5			

Relative impact of systematics on upper limit [%]

Alex Wang (Wisconsin)

$m_{\gamma\gamma}$ distribution

- The HH signal is obtained from a simultaneous fit to $m_{\gamma\gamma}$ across all categories
- No significant excess is observed and upper limits are set at 95% CL

Analysis results

- The observed (expected) limit on the HH non-resonant production cross-section is 130fb (180fb), corresponding to 4.1 (5.5) times the SM cross-section
- The observed (expected) constraint on the Higgs boson self-coupling is $-1.5 < \kappa_{\lambda} < 6.7$ (-2.4 < $\kappa_{\lambda} < 7.7$)
- XS limits improved by a factor of ~4 compared to the 36 fb⁻¹ result
- κ_λ constraint improved by a factor of ~2

- Analysis introduction
- Event selection and categorization
- Results
- Summary

Summary

- The new 139 fb⁻¹ATLAS non-resonant $bb\gamma\gamma$ result improves significantly on the 36 fb⁻¹ search
- Use a combination of $m_{bb\gamma\gamma}$ cuts and BDTs to define signal-sensitive categories
- Obtain good sensitivity for both the SM HH signal and the BSM κ_λ variations
- Looking forward to further improvements from Run 3 data and beyond!

CONF note link:

ATLAS-CONF-2021-016

To be submitted soon as a paper

Alex Wang (Wisconsin)