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Motivation

• Aim: find the distribution of uncorrupted data from corrupted 
observations by the detector (unfolding)

𝑝 𝑦 = ∫ 𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥

𝑦~𝑝(𝑦) = observed distribution 𝑝 𝑦 𝑥 = detector smearing 𝑥~𝑝(𝑥) = true distribution
(likelihood function)
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Histogram Approach

𝑦~𝑝(𝑦) = observed distribution 𝑝 𝑦 𝑥 = detector smearing 𝑥~𝑝(𝑥) = true distribution

𝑝 𝑦 = ∫ 𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥

𝑎𝑅𝑏

• Usually in HEP: solve discrete linear inverse problem: 𝑏=𝑅𝑎
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Histogram Approach

𝑦~𝑝(𝑦) = observed distribution 𝑝 𝑦 𝑥 = detector smearing 𝑥~𝑝(𝑥) = true distribution

𝑝 𝑦 = ∫ 𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥

𝑎𝑅𝑏

• Usually in HEP: solve discrete linear inverse problem: 𝑏=𝑅𝑎

Does not scale to many dimensions or many bins
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Empirical Bayes

• Goal: Find 𝑝(𝑥) to maximize marginal likelihood of observations 𝑦𝑖 !"#$

• Continuous approach & scales better to many dimensions
• Approach

• Learn a likelihood from simulated data à Use Neural Network
• Parameterize family of possible source distributions à Use NN
• Approximate integral with Monte Carlo integration
• Learn parameters of source NN to make data more likely

𝑝 𝑦 = ,𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥

≈.
!

𝑝 𝑦 𝑥! 𝑤ℎ𝑒𝑟𝑒 𝑥!~𝑝 𝑥
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Learn a likelihood from simulated data

• Don’t know likelihood 𝑝(𝑦|𝑥)
• But we can simulate this process

• Mechanistic understanding of interactions, put into code
• Generate plausible samples of observations & fit a density estimator to 

the generated data

O(10) 
particles

O(100) 
particles

O(108) detector 
elements
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Parameterize family of possible source distributions 

• Source (unfolded) model that can draw samples from a distribution with 
parameters 𝜃
• Defines a mapping from random noise to a learned source distribution 𝑞" 𝑥

Random noise

Generative 
model

Density 𝑞! 𝑥 defined by the model
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Learn parameters of NN to make data more likely

• How to learn 𝜃 so that 𝑞% 𝑥 approximates well source 𝑝 𝑥 ?
• Fit 𝜃 in order to maximize the likelihood of having observed 𝑦# #$%&

• Learning by optimization

• log 𝑝 𝑦 depends on 𝑞" 𝑥 but cannot be computed (requires to solve an 
intractable integral) → approximations
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Approximate integral with Monte Carlo integration

• Monte Carlo approximation of integrals
• Efficient

• Sampling from learned source 𝑞" 𝑥 is cheap
• Evaluating learned p y x is cheap
• 𝑞" 𝑥 and p y x are NNs → computations can be parallelized on GPUs
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Unfolding Jet Variables in Z+jet Events at the LHC

Blue  = true
Black = learned

Jet: stream of  particles 
produced by high energy 
quarks and gluons
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Posterior Estimation in Z+Jets

• Posterior: 𝑝(𝑥|𝑦) ∝ 𝑝 𝑦 𝑥 𝑝(𝑥)
• Distribution of true values given 

observation
• Use case: reconstruction, with 

estimate of uncertainty
• Method

1. Observation 𝑦
2. Sample 𝑥~𝑝(𝑥)
3. Rejection sampling: 

keep 𝑥 w/ prob. 𝑝(𝑦|𝑥)
Blue / Black = learned posterior

Red = true sampled value
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Inductive bias

• Ill-posed inverse problem:
• Relevant domain knowledge (inductive bias) can be 

embedded in the structure of the generative model for 
constraining the solution space
• Leads to considerable improvements
• E.g. introducing symmetries, bounds & smoothness
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Conclusion

• Formulate unfolding as an Empirical Bayes problem

• Can use learned model for reconstruction w/ posterior

• Inductive bias helps mitigate the ill-posed nature of 
problems, and is easily introduced in the models

arXiv:2011.05836


