Neural Empirical Bayes

<u>Maxime Vandegar</u>, Michael Kagan SLAC

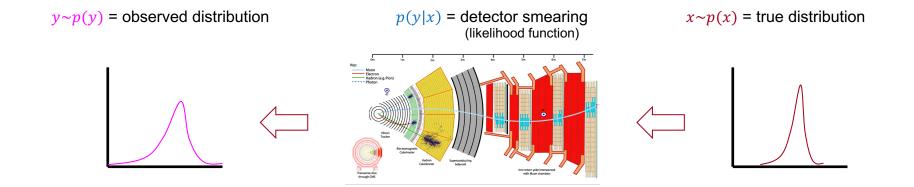
Collaborators: Antoine Wehenkel & Gilles Louppe Uliège

2021 Meeting of the Division of Particles and Fields of the American Physical Society (DPF21)

Motivation

 Aim: find the distribution of uncorrupted data from corrupted observations by the detector (unfolding)

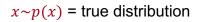
 $p(y) = \int p(y|x)p(x)dx$



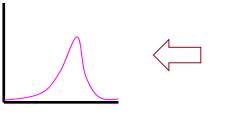
Histogram Approach

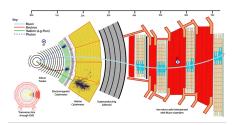
 $y \sim p(y)$ = observed distribution

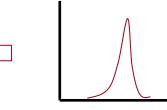
p(y|x) = detector smearing



SLAC

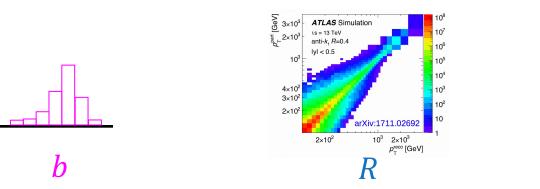


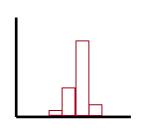




 $p(y) = \int p(y|x)p(x)dx$

Usually in HEP: solve discrete linear inverse problem: b=Ra



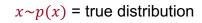


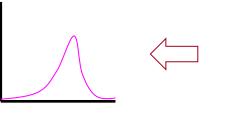
a

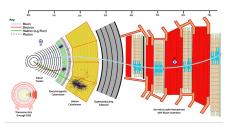
Histogram Approach

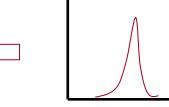
 $y \sim p(y)$ = observed distribution

p(y|x) = detector smearing



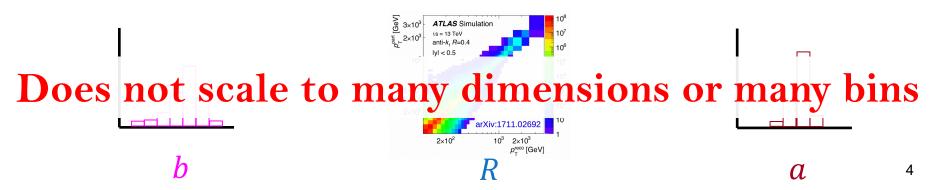






 $p(y) = \int p(y|x)p(x)dx$

Usually in HEP: solve discrete linear inverse problem: b=Ra



SLAC

$$p(y) = \int p(y|x)p(x)dx$$

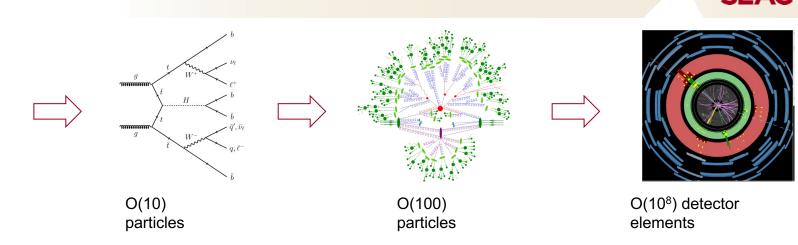
 $\approx \sum_{i} p(y|x_{i}) \quad where \quad x_{i} \sim p(x)$

- **Goal:** Find p(x) to maximize marginal likelihood of observations $\{y_i\}_{i=1}^M$
 - Continuous approach & scales better to many dimensions
- Approach
 - Learn a likelihood from simulated data \rightarrow Use Neural Network
 - Parameterize family of possible source distributions \rightarrow Use NN
 - Approximate integral with Monte Carlo integration
 - Learn parameters of source NN to make data more likely

Learn a likelihood from simulated data

$$\begin{split} - \left| \log M_{1} - \omega T^{2} \log M_{2} - \omega T^{2} \log M_{2} - (\omega T^{2} T^{2} \log M_{2}) + (\omega T^$$

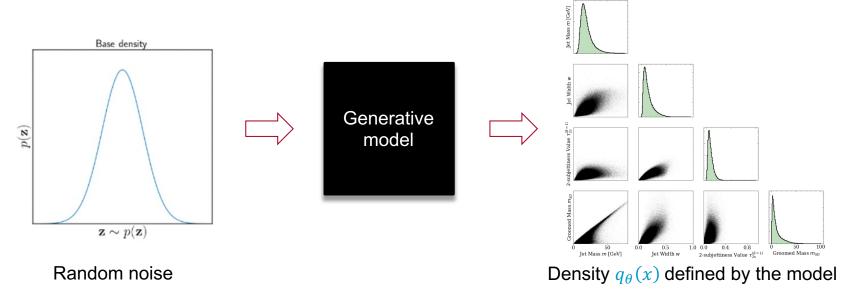
 $\begin{array}{l} \sum_{i=1}^{d} (X^{-1}Y) + ig_{ij} (Y^{-1}_{ij}) \sum_{i=1}^{d} (Y^{-1}_{ij}) - ig_{ij} (Y^{-1}_{ij}) + ig_{ij} (Y^{-1}_{ij}) \sum_{i=1}^{d} (Y^{-1}_{ij}) + ig_{ij} (Y^{-1}_{ij$



- Don't know likelihood p(y|x)
- But we can simulate this process
 - Mechanistic understanding of interactions, put into code
 - Generate plausible samples of observations & fit a density estimator to the generated data

Parameterize family of possible source distributions

- Source (unfolded) model that can draw samples from a distribution with parameters θ
 - Defines a mapping from random noise to a learned source distribution $q_{\theta}(x)$



Learn parameters of NN to make data more likely

- How to learn θ so that $q_{\theta}(x)$ approximates well source p(x)?
 - Fit θ in order to maximize the likelihood of having observed $\{y_i\}_{i=1}^M$
 - Learning by optimization

$$\theta^* = \arg \max_{\theta} \mathcal{L}$$
$$= \arg \max_{\theta} \mathbb{E}_{p_{data(y)}} \left[\log p(y) \right]$$

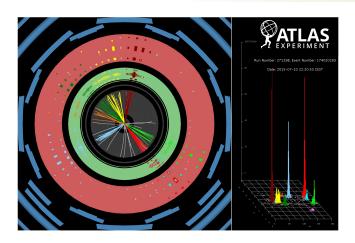
• $\log p(y)$ depends on $q_{\theta}(x)$ but cannot be computed (requires to solve an intractable integral) \rightarrow approximations

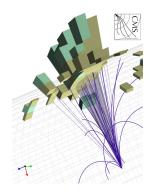
Approximate integral with Monte Carlo integration

$$\mathcal{L} = \mathbb{E}_{p_{data(y)}} \left[\log p(y) \right]$$
$$= \mathbb{E}_{p_{data(y)}} \left[\log \int p(y|x) p(x) dx \right]$$
$$\approx \sum_{k} \log \left[\sum_{i} p(y_{k}|x_{i}) \right], \quad x_{i} \sim q_{\theta}(x)$$

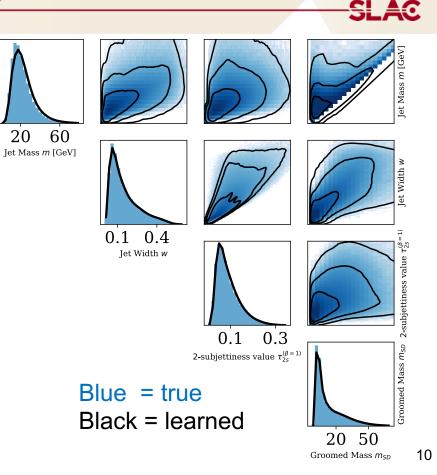
- Monte Carlo approximation of integrals
- Efficient
 - Sampling from learned source $q_{\theta}(x)$ is cheap
 - Evaluating learned p(y|x) is cheap
 - $q_{\theta}(x)$ and p(y|x) are NNs \rightarrow computations can be parallelized on GPUs

Unfolding Jet Variables in Z+jet Events at the LHC





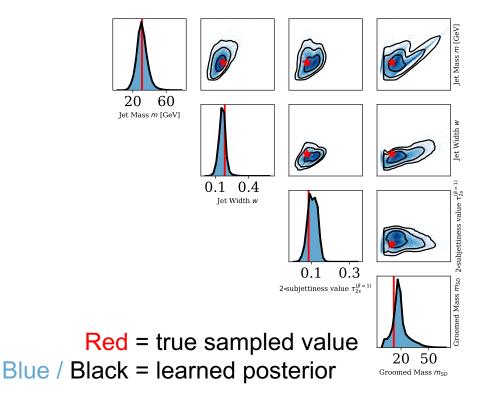
Jet: stream of particles produced by high energy quarks and gluons



Posterior Estimation in Z+Jets

- Posterior: $p(x|y) \propto p(y|x)p(x)$
 - Distribution of true values given observation
- Use case: reconstruction, with estimate of uncertainty
- Method
 - **1**. Observation *y*
 - 2. Sample $x \sim p(x)$
 - 3. Rejection sampling:

keep x w/ prob. p(y|x)



SLAC

- Ill-posed inverse problem:
 - Relevant domain knowledge (inductive bias) can be embedded in the structure of the generative model for constraining the solution space
 - Leads to considerable improvements
 - E.g. introducing symmetries, bounds & smoothness

• Formulate unfolding as an Empirical Bayes problem

Can use learned model for reconstruction w/ posterior

 Inductive bias helps mitigate the ill-posed nature of problems, and is easily introduced in the models

