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Motivation

"

« Aim: find the distribution of uncorrupted data from corrupted
observations by the detector (unfolding)

y~p(y) = observed distribution

p(y) = [ p(ylx)p(x)dx

p(y|x) = detector smearing
(likelihood function)

(=

x~p(x) = true distribution
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Histogram Approach

"

y~p(y) = observed distribution p(y|x) = detector smearing x~p(x) = true distribution

¢

p() = [ plx)p(x)dx
Usually in HEP: solve discrete linear inverse problem: b=Ra




Histogram Approach
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p() = [ plx)p(x)dx
« Usually in HEP: solve discrete linear inverse problem: b=Ra
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Empirical Bayes

p(y) = f (1P dx

~ ) pOlx)  where xi~p(x)
[

« Goal: Find p(x) to maximize marginal likelihood of observations {y }}1,

* Continuous approach & scales better to many dimensions
« Approach

* Learn a likelihood from simulated data - Use Neural Network
* Parameterize family of possible source distributions - Use NN
* Approximate integral with Monte Carlo integration

* Learn parameters of source NN to make data more likely



Learn a likelihood from simulated data

0(10) 0(100) O(108) detector
particles particles elements

*  Don’t know likelihood p(v|x)
- But we can simulate this process

* Mechanistic understanding of interactions, put into code
* Generate plausible samples of observations & fit a density estimator to
the generated data 6



Parameterize family of possible source distributions
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« Source (unfolded) model that can draw samples from a distribution with
parameters 6

* Defines a mapping from random noise to a learned source distribution g, (x)
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Learn parameters of NN to make data more likely

 How to learn 6 so that gy (x) approximates well source p(x)?

* Fit 8 in order to maximize the likelihood of having observed {y,}',
° Learning by optimization

0* = arg meaxﬁ

= arg max ]Epdam(y) log p(y)]
0

* logp(y) depends on gy (x) but cannot be computed (requires to solve an
intractable integral) — approximations



Approximate integral with Monte Carlo integration

U
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L — Epdam(y) [lng(y)]
—Eppn, [log / p<y|x>p<x>da:]

" Zlog
k

Zp(yklrvi)] , X ~ qo(x)

* Monte Carlo approximation of integrals
- Efficient

e Sampling from learned source g, (x) is cheap
* Evaluating learned p(y|x) is cheap
°* gp(x)and p(y|x) are NNs — computations can be parallelized on GPUs
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Posterior Estimation in Z+Jets

* Posterior: p(x|y) < p(y|x)p(x)
* Distribution of true values given
observation
« Use case: reconstruction, with

estimate of uncertainty

e Method

1. Observation y

2. Sample x~p(x)

3. Rejection sampling:
keep x w/ prob. p(y|x)
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Inductive bias

 |ll-posed inverse problem:

* Relevant domain knowledge (inductive bias) can be
embedded in the structure of the generative model for
constraining the solution space

* Leads to considerable improvements

* E.g. introducing symmetries, bounds & smoothness

"

12



Conclusion

« Formulate unfolding as an Empirical Bayes problem

« Can use learned model for reconstruction w/ posterior

 Inductive bias helps mitigate the ill-posed nature of
problems, and is easily introduced in the models

arXiv:2011.05836
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