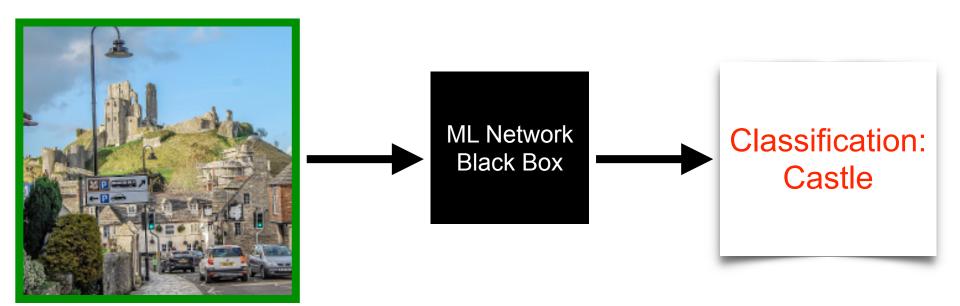
EXPLAINABLE AI FOR ML JET TAGGERS

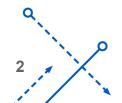
Garvita Agarwal, Lauren Hay, Ia Iashvili, Benjami Mannix, Christine McLean, Margaret Morris, Salvatore Rappoccio, Ulrich Schubert

DPF2021 13th July 2021

Motivation



How do we understand the network's decision-making process?

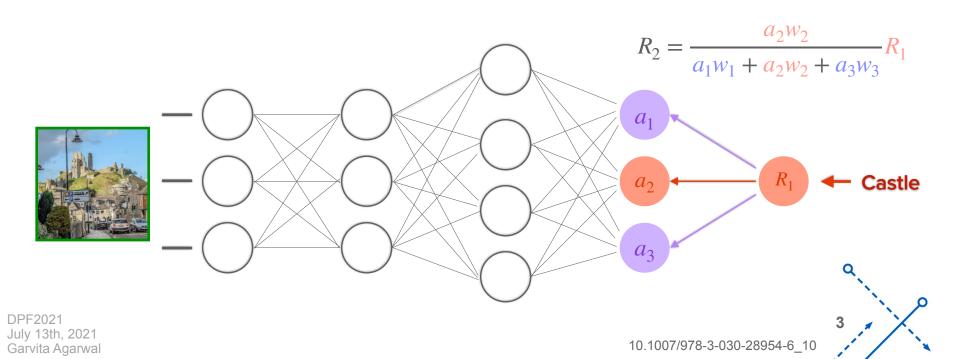


https://doi.org/10.1007/978-3-030-28954-6_10

ML explainability with LRP

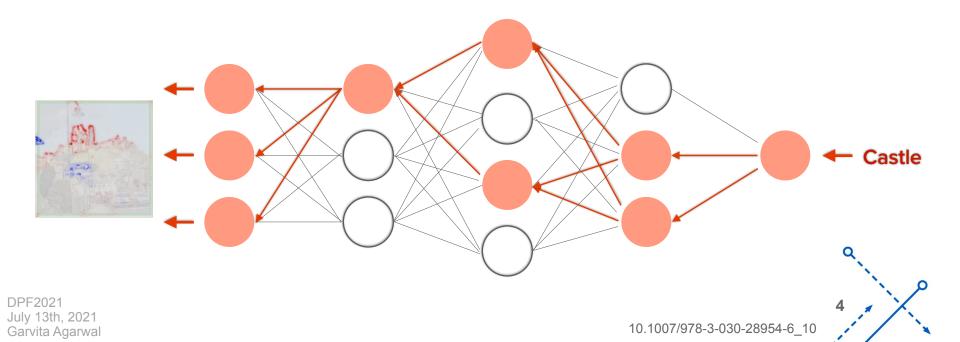
LRP (layer-wise relevance propagation) propagates a prediction backwards through the network, assigning a relevance to each input

$$R_j = \sum_{k} \frac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k$$



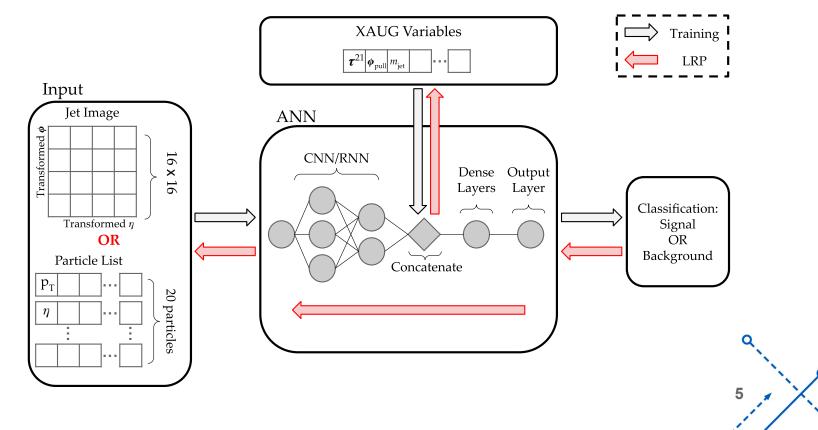
ML explainability with LRP

- Relevance is conserved the backwards propagation process does not alter the prediction
- LRP attributes the entirety of the network's decision to the inputs
 - Visualised as a heat map, in the case of images



ML explainability with XAUG Variables

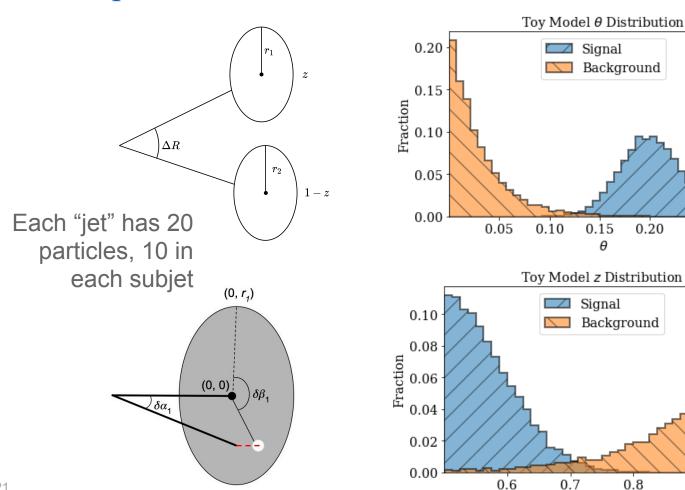
- Goal: explain decisions of ML jet classifiers using expert augmented (XAUG) variables
- Method: Input XAUGs into jet tagger, analyze network decision with LRP, and compare to network without XAUGs

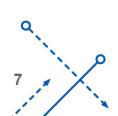


TOY MODEL

Toy Model

- Toy events simulated to mimic particle-level events
- Goal: capture all event information with a few variables





0.25

0.9

0.30

0.20

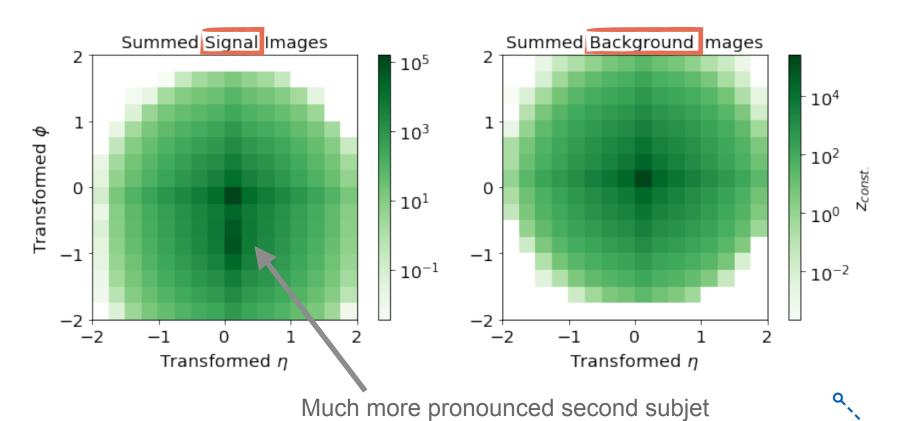
8.0

z

Garvita Agarwal

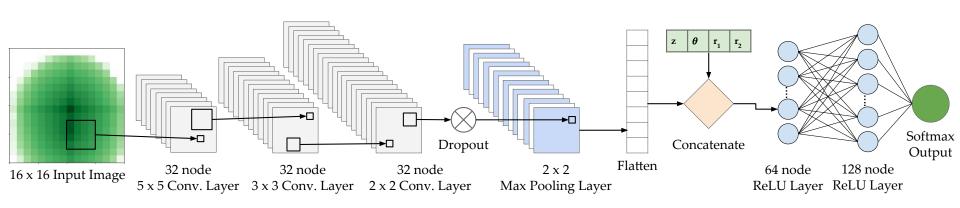
Toy Model

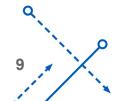
- Image pre-processing
 - Leading-p_T subjet at (0,0), sub-leading at (0,-1)
 - Parity flip



2DCNN

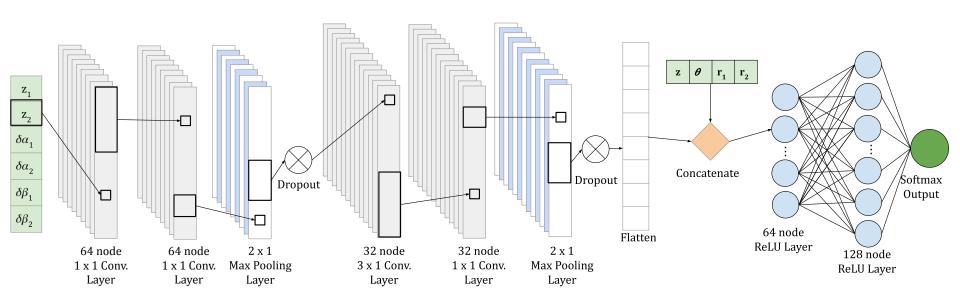
Architecture based on ImageTop network



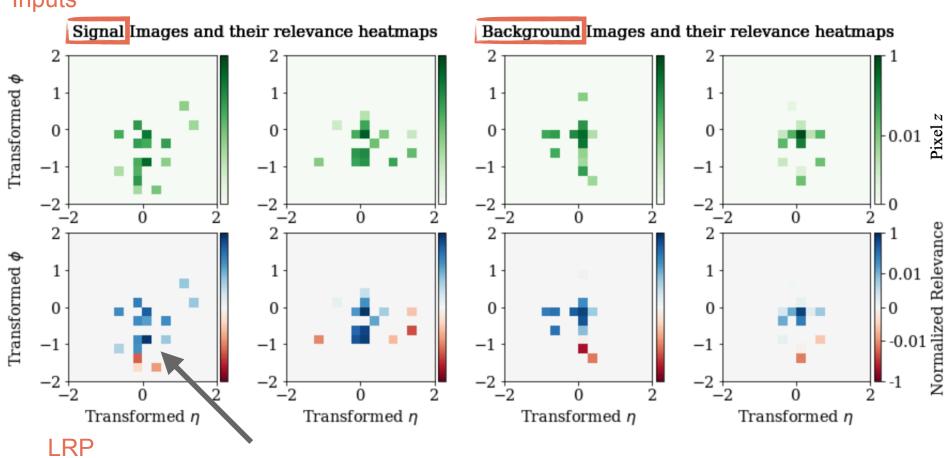


1DCNN

Architecture based on DeepAK8 jet classifier



Toy 2DCNN LRP Heatmaps

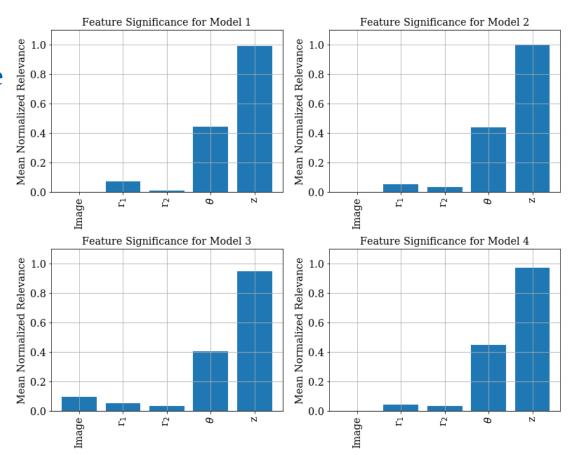


Results

Signal: more relevance along ϕ axis

Toy 2DCNN Results

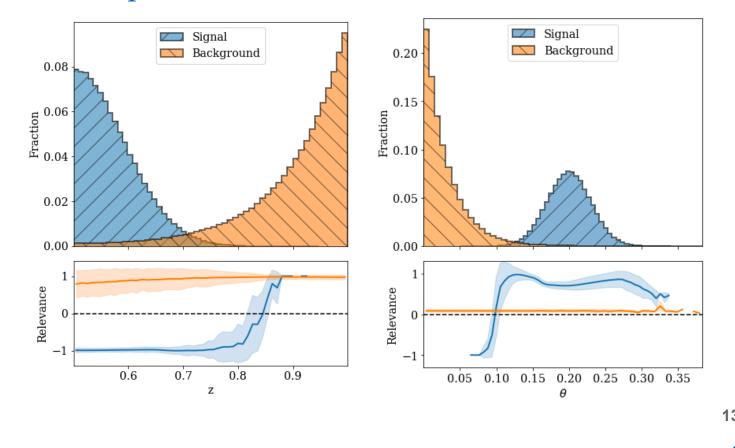
- Mean normalized relevance
 - For each event: find feature with max absolute LRP score, divide all scores by this max value
 - For each image: sum absolute value of normalized pixels to get a single image LRP score
 - For each feature: average normalized relevance scores across all events



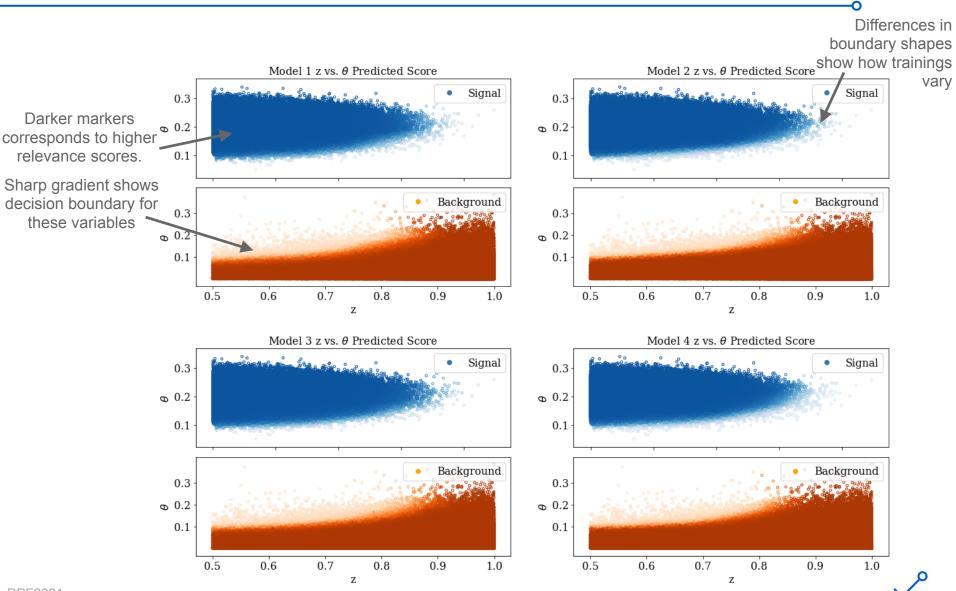
Some variation between trainings

Toy 2DCNN Results

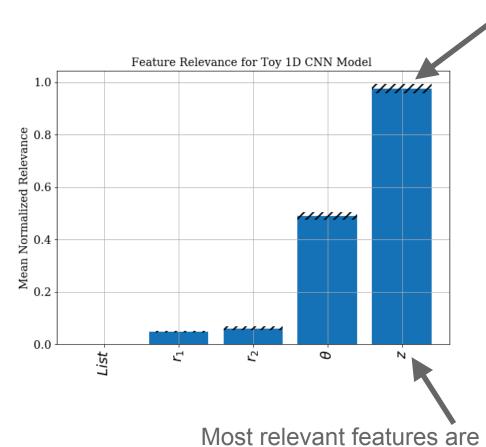
- Profile plots: relevance vs corresponding input variable
- For some profiles relevance appears to reflect input distribution, but other don't networks' decision boundaries live in a higher dimensional space



Toy 2DCNN Results

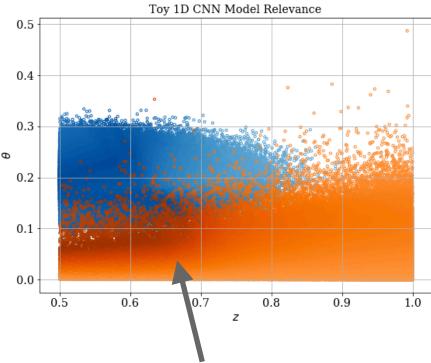


Toy 1DCNN Results



same as 2DCNN.

Error bars show standard deviation of relevance after multiple trainings.



More robust "substructure" within relevance of the top

two variables.

PYTHIA MODEL

Pythia Model

Simulated with Pythia8

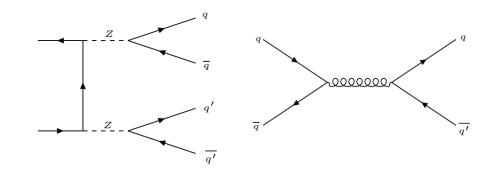
- Signal: SM ZZ, $Z \rightarrow b\bar{b}$
- QCD

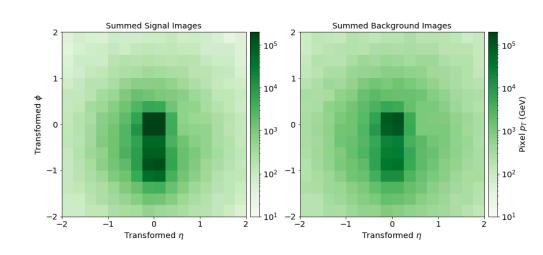
Jets

- Consider leading AK8 jet
- $p_T > 200 \text{ GeV}$
- mMDT: $z_{cut} = 0.1$, $\beta = 0$

Preprocessing

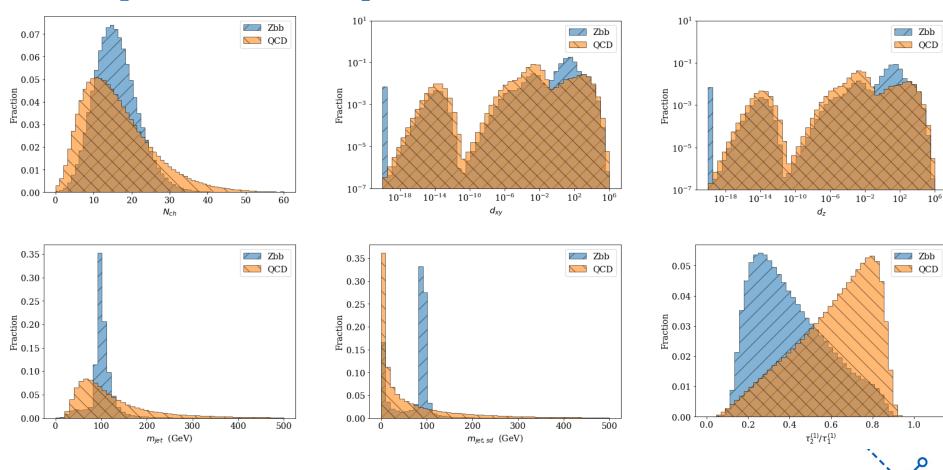
- Rotating and scaling so that lower pT subjet is always at (0,-1), and normalise inputs w.r.t. jet pT, parity flip
- Same as toy model





Pythia Model

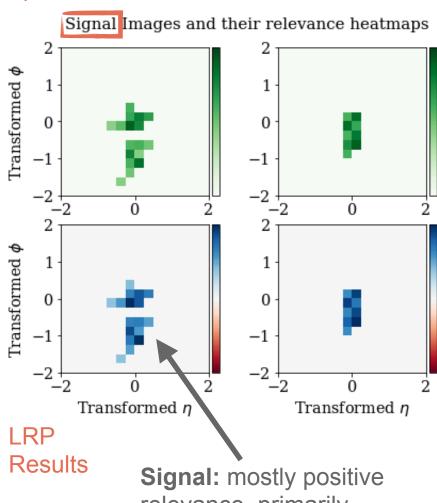
Use same network structures as Toy Model, replacing inputs with equivalent counterparts.



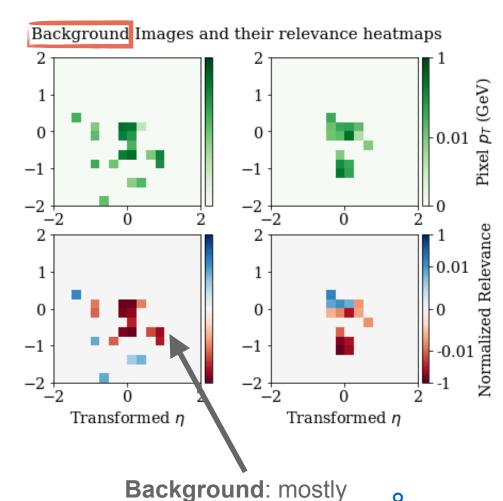
DPF2021 July 13th, 2021 Garvita Agarwal

Pythia LRP Heatmaps

Inputs



Signal: mostly positive relevance, primarily along ϕ axis

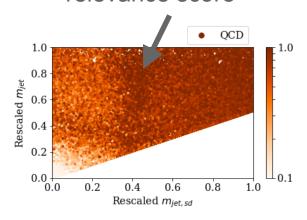


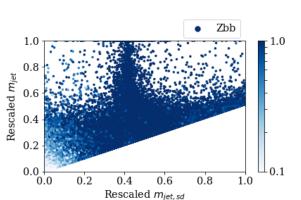
negative relevance,

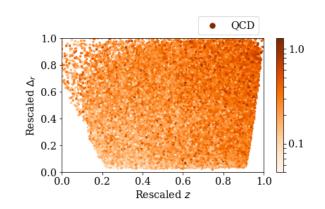
more diffuse

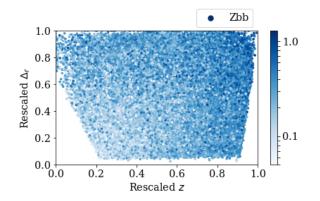
Pythia 1DCNN Results

higher absolute relevance score



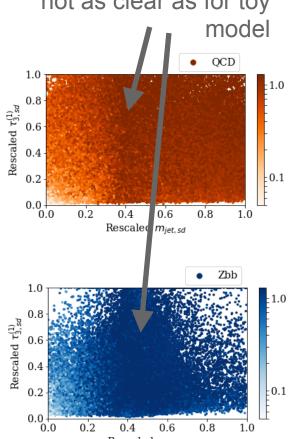






Decision boundaries:

not as clear as for toy



0.6

0.4

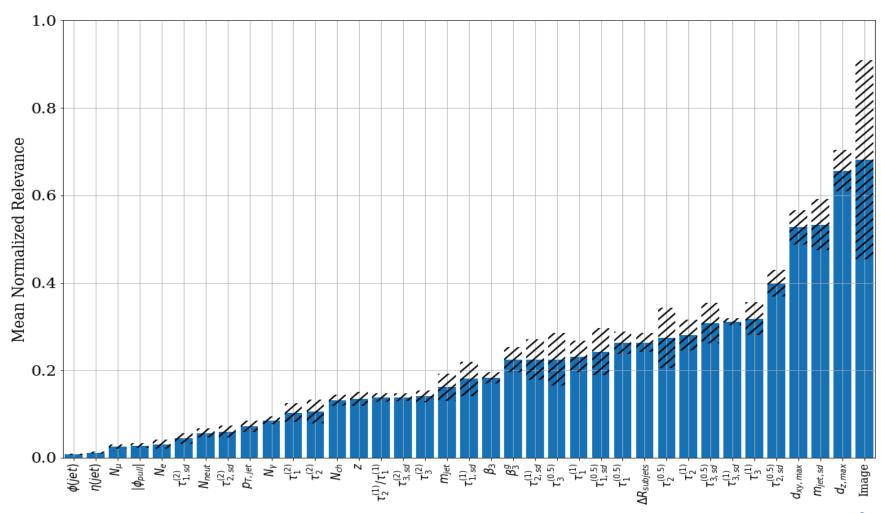
Rescaled mjet, sd

0.2

8.0

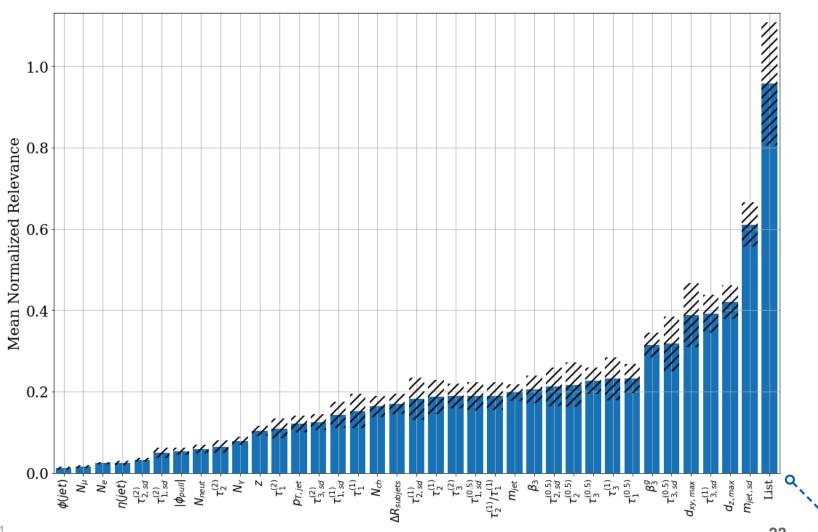
Pythia 2DCNN Results

Image and d_{z,max}: highest relevance, depending on the model

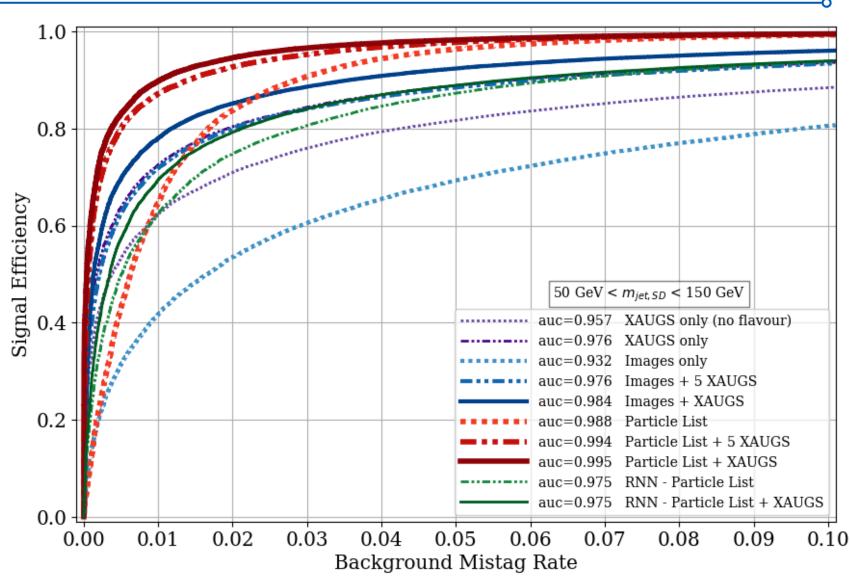


Pythia 1DCNN Results

Particle list: highest relevance for all models



Pythia Results: Model Comparisons



- •Introduced novel method for ML tagger explainability: LRP + expert augmented variables
 - Help explain network decisions, and relevant subspaces

XAUGs

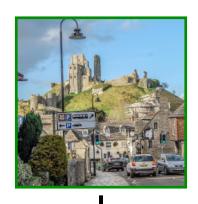
- Can boost classification performance
- Can entirely capture relevant information of lower-level networks

•XAUGs + LRP

- Can be used to reduce list of network inputs

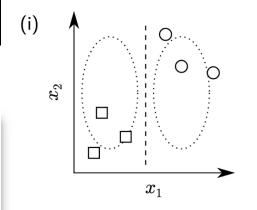
ADDITIONAL MATERIAL

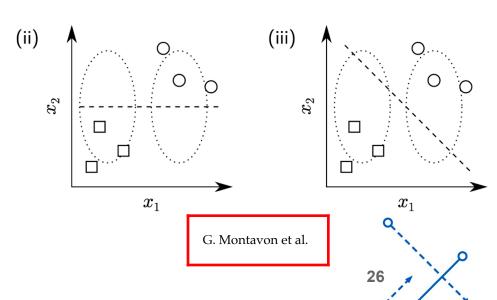
Introduction



Classification: Castle

- No explanation for the prediction.
- Predictions supported by meaningful patterns in data.
- Model should be able to explain itself →
 highlight features that support the
 prediction.





LRP Propagation Rules

• LRP-z

- Redistributes the relevance in proportion to the contributions to the neuron activation. $R_{j} = \sum_{k} \frac{a_{j}w_{jk}}{\sum_{0,i} a_{i}w_{ik}} R_{k}$
- Gradient X Input → Noisy

•LRP- ϵ

- ϵ absorbs some relevance for weak and/or contradictory contributions.
- For large ϵ only salient explanation factors survive the absorption → Less Noisy
- Used in our networks' dense layers

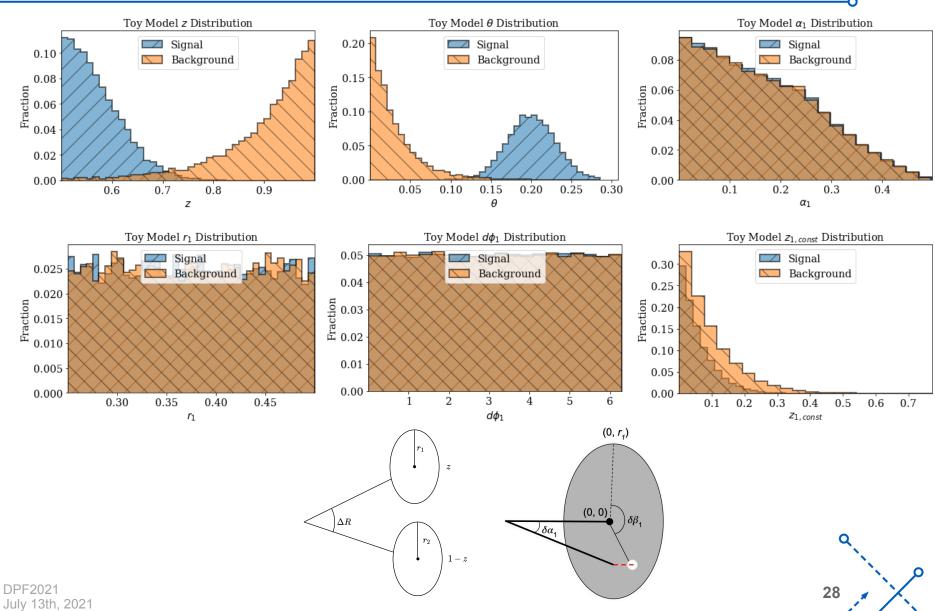
$$R_{j} = \sum_{k} \frac{a_{j} w_{jk}}{\epsilon + \sum_{0,j} a_{j} w_{jk}} R_{k}$$

• LRP- $\alpha_1\beta_0$

- Limiting effect on how large positive and negative relevance can grow
 - → Stable Explanations
- Used in our networks' convolution layers

$$R_{j} = \sum_{k} \left(\alpha \frac{(a_{j}w_{jk})^{+}}{\sum_{0,j} (a_{j}w_{jk})^{+}} - \beta \frac{(a_{j}w_{jk})^{-}}{\sum_{0,j} (a_{j}w_{jk})^{-}} \right) R_{k}$$

Toy Model Inputs



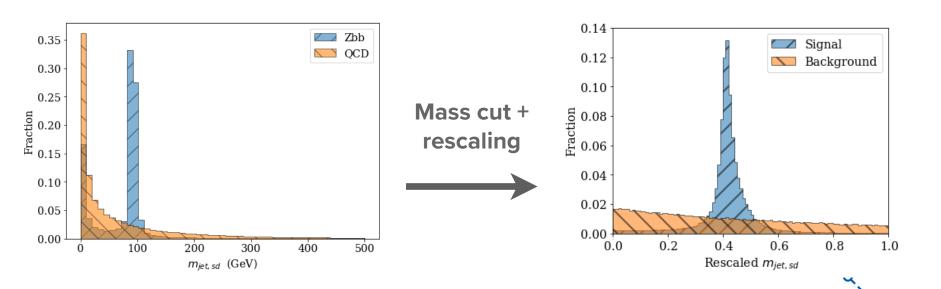
July 13th, 2021 Garvita Agarwal

Particle List Inputs

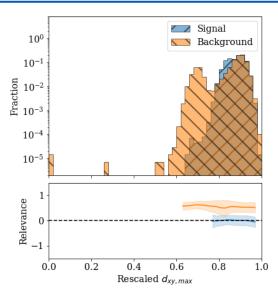
Variable $log(p_T)$ $log(p_T/p_{T_{jet}})$ log(E) $|\eta|$ $\Delta\phi(jet)$ $\Delta \eta(jet)$ $\Delta R(jet)$ $\Delta R(subjet1)$ $\Delta R(subjet2)$ Charge qisMuon isElectron isPhoton is Charged HadronisNeutralHadron d_{xy} d_z

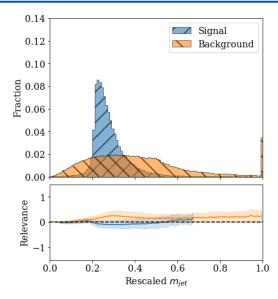
Pythia Model Preprocessing

- 1. Cut on softdrop mass: keep jets with m_{SD} 50-150 GeV
- 2. Numerical rescaling
 - 1. Rebin outliers to mean + 3(std) and mean 3(std)
 - 2. Input distributions are then rescaled from 0 to 1: $\frac{x x_{min}}{x_{min} x_{max}}$

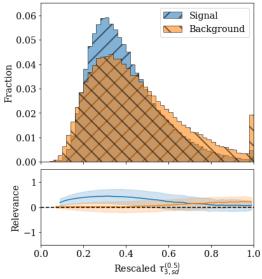


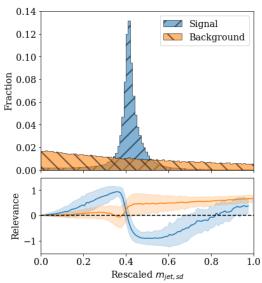
Pythia Model 1D LRP Plots





Profiles don't show clear decision boundary - need higher dimensional plots





DPF2021 July 13th, 2021 Garvita Agarwal

RNN

