Progress towards a more sensitive CWoLa hunt with the ATLAS detector

Kees Benkendorfer (Reed College)

DPF2021

12 July 2021

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
•	00	0000000	0	0

1 Introduction

2 Strategy

- CWoLa and its problems
- SALAD
- Strategic confusion
- 3 Projected sensitivity

4 Conclusion

Outline

Strategy 00000000 Projected sensitivity 0 Conclusion O

Model-agnostic searches

- Wide range of model-specific searches
- Even wider range of possible signal models
- Model-agnostic searches can dramatically expand search 'width'

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
O	O	00000000	O	O
Data used	1			

- High p_T dijets from ATLAS Run 2 data
 - ∎ 139 fb⁻¹
- Blinding:
 - \blacksquare Considering events with $|\Delta\eta|>1.2$
 - Only looking at 10% of the above
- Simulation is Pythia

Classifier learns likelihood ratio

See arXiv: 1708.02949, 1902.02634

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
O	00	OOOOOOO	O	O
CWoLa and its problem	S			

Standard CWoLa hunt

- Previously performed with ATLAS Run 2 data
 - Looking at dijet events
- Resonant feature: dijet invariant mass
- Classification feature: jet masses
- See arXiv: 2005.02983

feature space

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
O	00	0000000	O	O
CWoLa and its problem	S			

Standard CWoLa hunt

- Previously performed with ATLAS Run 2 data
 - Looking at dijet events
- Resonant feature: dijet invariant mass
- Classification feature: jet masses
- See arXiv: 2005.02983

Our Goal

Achieve higher sensitivity with more classification features

feature space

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
O	00	0000000	O	O
CWoLa and its problem	S			

Problems with CWoLa

- Signal region (SR) and sideband (SB) have different M_{JJ}
- More classification features → CWoLa infers *M*_{JJ}
- CWoLa tags entire signal region as signal
- Result: large false positive and low sensitivity to real signal
 - Previously avoided with statistical decorrelation

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
O	00	0000000	0	O
SALAD				

Step 1: learn imperfections in simulation

- SALAD: Simulation Assisted Likelihood-free Anomaly Detection
- See arXiv: 2001.05001

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
O	00	0000000	0	O
SALAD				

Step 2: reweight SR in simulation

- SALAD: Simulation Assisted Likelihood-free Anomaly Detection
- See arXiv: 2001.05001

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
O	00	00000000	0	O
SALAD				

Step 3: learn simulation vs data in SR

- SALAD: Simulation Assisted Likelihood-free Anomaly Detection
- See arXiv: 2001.05001

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
o	00	○○○○○○●○	O	O
SALAD				

Results without signal

Colors and values are fitted significance

- Fit in sideband according to $p_1(1-m)^{p_2}m^{-p_3}$
- Interpolate to signal region
- Features used:
 - *M*: jet mass
 - τ_{21} : *N*-subjettiness ratio τ_2/τ_1
 - τ_{32} : *N*-subjettiness τ_3/τ_2
 - *b*₁, *b*₂: *b* tagging on first and second subjets
 - EF: fraction of jet energy lost to EM calorimeter
 - N tracks: number of jet tracks

Outline 0	Introduction 00	Strategy ○○○○○○●	Projected sensitivity 0	Conclusion O
Strategic confusion				
Strategic	confusion			

Standard SALAD without signal:

- Injecting some sideband events into signal region can reduce false positive significance
- With 25% of sideband in SR:

Outline 0	Introduction 00	Strategy	Projected sensitivity 0	Conclusion O
Strategic confusi	on			
Strateg	ic confusion			

Standard SALAD without signal:

- Injecting some sideband events into signal region can reduce false positive significance
 - reduced false positive
- With 25% of sideband in SR:

Outline	Introduction	Strategy	Projected sensitivity	Conclusion
0	00	0000000	•	0

Sensitivity to 2σ signal

Search strategy can take 2σ excess to $>5\sigma$ result

- Making progress towards a more sensitive model-agnostic search in ATLAS Run 2 data
- \blacksquare More classifier features \rightarrow wider search
- Simulation assistance (SALAD) \rightarrow more robust search
- Next steps: need to correct for classification bias

 Acknowledgements: I am very grateful to Benjamin Nachman and Luc Le Pottier for their support, guidance, and collaboration