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Model-agnostic searches

Wide range of
model-specific searches
Even wider range of possible
signal models
Model-agnostic searches can
dramatically expand search
‘width’

BSM

??

SMSM SMSM
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Data used

High pT dijets from ATLAS Run 2 data
139 fb−1

Blinding:
Considering events with |∆η| > 1.2
Only looking at 10% of the above

Simulation is Pythia
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CWoLa and its problems

CWoLa overview
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

CWoLa
Classification 

Without Labels

Classifier learns likelihood ratio
See arXiv: 1708.02949, 1902.02634
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CWoLa and its problems

Standard CWoLa hunt

Previously performed
with ATLAS Run 2 data

Looking at dijet
events

Resonant feature: dijet
invariant mass
Classification feature:
jet masses
See arXiv: 2005.02983

Our Goal
Achieve higher sensitivity with
more classification features
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.
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drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,
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signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.
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using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
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drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,
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classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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equivalent to the problem of learning with asymmetric random label noise, where there have
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about the signal/background labels or class proportions in the mixed samples is used during training.
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coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.
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CWoLa and its problems

Problems with CWoLa

Signal region (SR) and
sideband (SB) have different
MJJ

More classification features
→ CWoLa infers MJJ

CWoLa tags entire signal
region as signal
Result: large false positive
and low sensitivity to real
signal

Previously avoided with
statistical decorrelation
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SALAD

Step 1: learn imperfections in simulation

SR SBSB

SR SBSB

Data

Sim

SR = Signal Region

SB = Sideband

SALAD: Simulation Assisted Likelihood-free Anomaly
Detection
See arXiv: 2001.05001
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SALAD

Step 2: reweight SR in simulation

SR SBSB

SR SBSB

Data

Sim

SR = Signal Region

SB = Sideband

SALAD: Simulation Assisted Likelihood-free Anomaly
Detection
See arXiv: 2001.05001
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SALAD

Step 3: learn simulation vs data in SR

SR SBSB

SR SBSB

Data

Sim

SR = Signal Region

SB = Sideband

SALAD: Simulation Assisted Likelihood-free Anomaly
Detection
See arXiv: 2001.05001
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SALAD

Results without signal

M
M_t2

1
M_t3

2

M_t2
1_

t32

M_t2
1_

b1
_b

2
M_e

f

M_n
trk

M_t2
1_

ef

Classifier features

No signal 0.57 1.66 1.61 3.48 2.06 1.05 1.39 2.42

ATLAS Work in Progress
fitted  

 injected 2.0 sigma, top 1.0%

observed sigma

Colors and values are fitted significance
Fit in sideband according to p1(1 − m)p2m−p3

Interpolate to signal region
Features used:

M: jet mass
τ21: N-subjettiness ratio τ2/τ1
τ32: N-subjettiness τ3/τ2
b1, b2: b tagging on first and second subjets
EF: fraction of jet energy lost to EM calorimeter
N tracks: number of jet tracks
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Strategic confusion

Strategic confusion
Standard SALAD without signal:

M
M_t2

1
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ef

Classifier features

No signal 0.57 1.66 1.61 3.48 2.06 1.05 1.39 2.42

ATLAS Work in Progress
fitted  

 injected 2.0 sigma, top 1.0%

Injecting some sideband events into signal region can reduce
false positive significance

With 25% of sideband in SR:
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ATLAS Work in Progress
fitted  

 injected 2.0 sigma, top 1.0%

reduced false positive
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Sensitivity to 2σ signal
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previous search
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Search strategy can take 2σ excess to >5σ result
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Conclusion

Making progress towards a more sensitive model-agnostic
search in ATLAS Run 2 data
More classifier features → wider search
Simulation assistance (SALAD) → more robust search
Next steps: need to correct for classification bias
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collaboration

13 / 13


	Outline
	Introduction
	Strategy
	CWoLa and its problems
	SALAD
	Strategic confusion

	Projected sensitivity
	Conclusion

