Active Learning for Exclusion Level Set Estimation with the ATLAS experiment

DPF July 2021

Irina Espejo (NYU)

Acknowledgements

Kyle Cranmer (NYU)

Lukas Heinrich (CERN)

Gilles Louppe (U. Liège)

Patrick Rieck (MPI)

Janik von Ahnen (DESY)

Eleni Skorda (Lund University)

Paul Gadow (DESY)

Google DeepMind

NSF (OAC-1841471) NSF (ACI-1450310)

The SCAILFIN Project

Motivation

Motivation

The naive approach suffers from the curse of dimensionality.

This is a bottleneck for use case theories with 5 or 19 dim.

It is <u>infeasible</u> to make exclusion plots in higher dimensions using ATLAS current approach, we need a more efficient approach.

Idea

From Lukas' Talk at ACAT 2019

high latency: computing each point takes days, weeks

Active Learning

Statement

The black box function is $f(\theta) \rightarrow p$ -value.

The goal is to find the excursion set $E_t(f) = \{\theta | f(\theta) = t\}$ for a given a threshold t with as few queries as possible.

Method

- 1. Start with dataset $\mathcal{D} = \{\boldsymbol{\theta}_i, f(\boldsymbol{\theta}_i)\}$
- 2. Train a Gaussian process $Y|\theta,\mathcal{D}$ with predictive mean $\mu_{Y|\mathcal{D}}(\theta)$ and covariance $\Sigma^2_{Y|\mathcal{D}}(\theta,\theta')$
- 3. Evaluate the acquisition function $U_t(\theta)$ for all θ (cheap) using $Y|\theta,\mathcal{D}$
- 4. Select new point $\boldsymbol{\theta^*} = \operatorname{argmax} \ U_t(\boldsymbol{\theta})$
- 5. Query the simulator at $f(\theta^*)$ and update dataset $\mathcal{D} \leftarrow \mathcal{D} \cup (\theta^*, f(\theta^*))$

Acquisition function (for reference)

Consider the level set estimation problem as a classification problem for the parameter points over a subjacent grid

$$Z|m{ heta}\sim Bernoulli(S(m{ heta}))$$
 with $S(m{ heta})=\int_{-\infty}^t p(Y=y|m{ heta},\mathcal{D})dy$ and consider the entropy

$$H[Z|\boldsymbol{\theta}] = -S(\boldsymbol{\theta})\log S(\boldsymbol{\theta}) + (S(\boldsymbol{\theta}) - 1)\log(1 - S(\boldsymbol{\theta}))$$

Maximum Entropy Search (MES)

$$U_{MES}(oldsymbol{ heta}) = H[Z|oldsymbol{ heta}]$$

Excursion toy example in 2D

Actively Learning Exotic Physics

Prototype example: dilepton resonance search

- Straightforward to reinterpret the 2 resonance search using truth level MC events
 - Not strictly in need of active learning, but useful as a test case
- Signal Model: Spin-1 Dark Matter mediator Z'
 - 5 parameters to investigate:

$$\{x\} = \{ (m_{Z'}, m_{DM}, g_q, g_{\ell}, g_{DM}) \}$$

• Vector mediator benchmark model, $g_q = 0.1$, $g_I = 0.01$, $g_{DM} = 1.0$ scanning $(m_{Z'}, m_{DM}) - 2$ -dim parameter space

• Vector mediator benchmark model, $g_q = 0.1$, $g_l = 0.01$, $g_{DM} = 1.0$ scanning $(m_{Z'}, m_{DM}) - 2$ -dim parameter space

• Vector mediator benchmark model, $g_q = 0.1$, $g_l = 0.01$, $g_{DM} = 1.0$ scanning $(m_{Z'}, m_{DM}) - 2$ -dim parameter space

- Vector mediator benchmark model, $g_q = 0.1$, $g_l = 0.01$, $g_{DM} = 1.0$ scanning $(m_{Z'}, m_{DM}) 2$ -dim parameter space
- Efficient convergence to the exclusion limit surface with
 18 points from 3 iterations

- 4-dim. parameter space $\{x\} = \{ (m_{Z''}, m_{DM}, g_{Q'}, g_{\ell}) \}, g_{DM} = 1$
- Axial-vector benchmark subset $g_a = g_{\ell} = 0.1$: reproducing true limit

- 4-dim. parameter space $\{x\} = \{ (m_{Z'}, m_{DM}, g_{q'}, g_{l'}) \}, g_{DM} = 1$
- Axial-vector benchmark subset $g_q = g_p = 0.1$: reproducing true limit
- Sufficient to evaluate 200 (5x40) points {x} (out of the box run, no optimisation), compared to about 10 000 points when scanning a grid

Actively Learning Exotic Physics Two mediator dark matter model: E_{τ}^{miss} + Higgs(bb) search

New signatures emerge, depending on the parameter choices:

E_T miss + dark Higgs

particle masses		coupling constants	
DM mass	m_{χ}	dark-sector coupling	g_{χ} or y_{χ}
Z' mass	$m_{Z'}$	quark $-Z'$ coupling	g_q
${\rm dark\ Higgs\ mass}$	m_s	Higgs mixing angle	θ

[ATLAS-CONF-2021-006]

JHEP 09 (2016) 042

Exotics pilot project: Active learning with the E_T^{miss} + H(bb) search

- RECAST-based reinterpretation of E_T^{miss} + H(bb) search for dark Higgs boson model
 - o 5 parameters to investigate: $\{x\} = \{ (m_{Z'}, m_{DM}, m_{S}, g_{q'}, g_{DM}) \}$
 - Pilot project similar to <u>ATL-PHYS-PUB-2019-032</u> demonstrating RECAST use in Exotics
 - Complementary effort to dedicated E_T^{miss} + dark Higgs(bb) search in JDM
- Active learning effort ongoing in SUSY WG Run 2 pMSSM scan
 - Demanding 19 parameters to constrain in this case

Validation of truth-level analysis: limits E_T^{miss} + Higgs(bb) search

Good agreement between limits from RECAST with reco-level signals (left) and truth-level estimate with private TRUTH1 signals processed with SimpleAnalysis (right).

Summary

- Active learning can raise efficiency in BSM limit setting
- Demonstrated applicability using our Run 2 dilepton resonance search
- Mono-H(bb) reinterpretation as an Exotics active learning pilot project
 - setting stringent limits on dark Higgs boson dark matter model
 - first application of active learning, including use of GPUs

Back up

Will I converge?

Yes, if the target function can be sampled from a Gaussian Process with your selected kernel(x, x')

(see Bayesian model selection theory)

Back up