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Motivation
Generate LArTPC events given the particle and momentum of 
the particle.
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Why?
● LArTPCs are widely used in neutrino physics.
● Potentially Fast Generation of simulated events (over 

GEANT4 simulations).



Brief Overview
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Latent Space
● compressed 

representations of data.

● emphasize the most 

important and semantically 

interesting features.
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Reconstruction Loss: ||x-x’|∣2 Ideally, the decoder should be able to 

accurately reconstruct the raw data from 

the encoder’s latent representation, i.e., 

x=x’



Discrete 
Space
Latents do not necessarily need to 

be continuous vectors, it really just 

needs to be some numerical 

representation for the data.

A lot of the data we encounter in the 

real world favors a discrete 

representation. For example, images 

contain discrete objects with some 

discrete set of qualifiers. 
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Figure: [2] 
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Quantizing Autoencoders: VQ VAE

Discrete codebook 

component added to the 

network.

The codebook is basically a 

list of vectors associated 

with a corresponding index. 

output of the encoder 
network is compared 

to all the vectors in the 
codebook

codebook vector 
closest in euclidean 
distance is fed to the 

decoder.
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Producing Multiple Codes
● There is such a restricted set of vectors that can be fed to the decoder (just the set of codebook vectors). 

How could one ever expect to generate the huge quantity and diversity of possible images when the decoder can 
only accept the set of codebook vectors as input? 

● But the encoder does not output just one vector, but instead it usually produces a series of vectors.

● For instance, with images of size 32x32, the encoder might output a 32x32 grid of vectors, each of these are 

quantized and then the entire grid is fed to the decoder. If we have a codebook of size 512, and then our 

decoder can basically output 51232*32=29216  distinct images! 
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Learning the Prior
● Network to learn the probability distribution 

of the codes. 

● Generate new data from the distribution by 

sampling from this prior and feeding the 

samples to the decoder.
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Autoregressive 
Model
Given all previous latent codes in the 
sequence, predict the next one. 

For images, we can apply 

autoregressive learning to a 

sequence that goes from top left to 

bottom right.
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Events Generated from VQ VAE and PixelCNN

The quality of the output was quantified using track and shower labels. Figure: [3] Lutkus  et. al.
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What’s next?

Conditional Image Generation



Conditional 
Image 
Generation

The Idea
Generate the trajectory of a 

particle given the initial 

momentum.
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Generate Dataset

Train VQ VAE
Architecture: VQ VAE2

Train the conditional 
Autoregressive Network

Architecture: PixelSNAIL

Figure: [4] Ali 
Razavi et. al.

Figure: [5] Ali 
Razavi et. al.



The Dataset
● Particles: showers and 

tracks

● Cropped such that the 

particle is at the center of 

the image
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Hierarchical Autoencoders: VQ VAE2
● Top latent code: models 

global information.

● Bottom latent code: 

responsible for 

representing local 

details.

Decoder: feed 
forward network 
that takes as input 
all levels of the 
quantized latent 
hierarchy.

Encoder: transforms 
and downsamples the 
image by a factor of 
four.

Scales down the 
representations by a 
factor of two.

Figure: [6] Ali 
Razavi et. al.
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PixelSNAIL

● Prior over the top latent map: 

Responsible for structural 

global information

● Prior over the bottom latent 

map: Responsible for the local 

information
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Figure: [7] Ali 
Razavi et. al.
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Summary
● We train a network using VQ VAE (autoencoder) and PixelCNN (autoregressive model) 

to generate images (unconditioned on particle and momentum) that resemble LArTPC 
events. 

● We are currently pursuing more sophisticated architectures to improve the quality of the 
generated images. 

● Additionally, we are working on designing a network that can generate images 
conditionally.
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Application of Generative Network: 
Hypothesis Testing
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Track and Shower Labels
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Figure: [9] Lutkus  et. al.
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Results from VQ VAE and PixelCNN

Comparing Frequency of SSNet Labels per Image

Figure: [10] Lutkus  et. al.


