

For the IceCube Collaboration

Direction Reconstruction using a CNN for GeV-Scale Neutrinos in IceCube

Shiqi Yu

Michigan State University 2021-07-14

DPF 2021

The IceCube Neutrino Observatory

- Neutrino interactions in ice produce particles emitting Cherenkov radiation
- Digital optical modules (DOMs) detect photons: denser instrumented DeepCore detects GeV-scale events
- Abundant source of neutrinos from cosmic ray atmospheric interactions
- O(10^4) km baseline (L) inferred using arrival direction (zenith)

Neutrino Oscillations

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = U^{PMNS} \times \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

- Neutrino flavor eigenstates are superpositions of mass eigenstates.
- Relations described by PMNS matrix.

$$U^{PMNS} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{bmatrix} \begin{bmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{bmatrix} \begin{bmatrix} \cos\theta_{12} & 0 & \sin\theta_{12} \\ -\sin\theta_{12} & 1 & \cos\theta_{12} \\ 0 & 0 & 1 \end{bmatrix}$$

- Most parameters are well measured.
- Some parameters need to be better measured: θ_{23} and Δm_{32}^2

v_{μ} Disappearance

Event Display

Cascade-like Event:

Neutral current interaction

 ν_e CC and 83% ν_{τ} CC

Track-like Event: ν_{μ} charged-current interaction (CC) and 17% $\,\nu_{\tau}\,{\rm CC}$

Shiqi Yu | DPF 2021

Zenith Reconstruction

- Tool: a convolutional neural network, which extracts abstract features from the input images and predict output values
- Output: value of zenith from 0 to π
- Input:
 - 8 DC strings; 19 IC strings

 60 DOMs x 5 variables: sum of charges; time of first (last) hit; charge weighted mean (std.) of time

Output layer

Training

- ν_{μ} CC Monte-Carlo (MC) sample, 5-300 GeV, flat true zenith
- Approximately 5 million events: 80% training set; 20% validation set
- True vertex contained

- Compare results of CNN to the current likelihood-based method ("Retro")
- Cuts:
 - Reconstructed energy in [5, 300] GeV
 - Reconstructed vertex is contained

Distributions of cos(zenith): True ν_{μ} CC

- Comparable distributions and contours
- Events smeared towards the boundaries

Median

-0.5

0.0

68% band

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

True cos(zenith)

Resolution Comparison: True ν_{μ} CC

- CNN has smaller overall RMS
- Comparable to current method in bias vs. cos(zenith)

Distributions of cos(zenith): True ν_e CC

 Comparable distributions and contours

Median

-0.5

68% band

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

True cos(zenith)

 Contours comparable but wider than those of true ν_{μ} CC sample

IceCube Work in Progress

0.5

0.0

CNN reconstructed cos(zenith)

Resolution Comparison: True ν_e CC

- CNN has smaller RMS
- Larger RMS than true ν_{μ} CC events:

 $\nu_e CC$ events harder to reconstruct

Comparable to current method in bias vs. cos(zenith)

Summary and Future

- CNN reconstructed cos(zenith) improved overall RMS by ~2.5% for ν_{μ} CC sample
- Bias against true or reconstructed cos(zenith) is comparable to the current likelihood-based method
- True ν_{μ} CC events have better resolution than true ν_{e} CC events in general
- Processing speed up to 10k times faster than current method
- Investigating improvements on systematic uncertainties

Acknowledgment: This study is supported by National Science Foundation under grant number: NSF1913607

10k times faster processing		
Time/Event	GPU	CPU
CNN	0.0044	0.108
Likelihood	-	44.97

Thank You!

Shiqi Yu | DPF 2021

Backup

RMS Slices of NuE CC

RMS Slices of NuMu CC

