RNN in hls4ml

Aaron Wang
University of Washington
12th, July, 2021
APS DPF Presentation

Introduction

e Recursive Neural Network (RNN) models are the best to exploit the sequential structure
in a dataset
e Increasing usage of RNN-based algorithms in the particle physics community
o Fast inference of such algorithms on an FPGA will be crucial in the future
e Our goalis to support Keras/TensorFlow RNN models in hils4ml
o Past presentations (in 2019) by Phill et. al: talk1 talk2

In this presentation

Training and performance of some benchmark models

his4ml conversion: Top level design - with blocks and simpler code algo
Design Constraints

Results

https://drive.google.com/file/d/1b62jf6w-UeJsq2vFQdw1Hm77h_voIb-d/view
https://drive.google.com/file/d/1B8x-6u9xex03hiVMQkCHgDXvCTdbiJQG/view

Overview

e \We want to support RNN models of different sizes

e Currently we are working on several LSTM (Long Short-Term Memory) and GRU
(Gated Recurrent Unit) models

e Two benchmark models will be discussed
1. Small model with 5000k trainable parameters
a. Jet-tagging problem

Dataset: CERNbox link

2. Large model with 100000k trainable parameters
a. QuickDraw model

Dataset: quickdraw-dataset

Training code: O RNN-HLS4ML-paper

https://cernbox.cern.ch/index.php/s/AgzB93y3ac0yuId?path=%2Ffixed
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/anrunw/RNN-HLS4ML-paper

What is an RNN?

e RNN is a Recurrent Neural Network ® @? C? ©
o Performs same function for every input of = [A-fA-fAT——{A]
data ® (T@ C»B (xT) - ®

O Remembers the Immedlate paSt and addS An unrolled recurrent neural network.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

it to the present
o Good at processing sequential data
m Text, speech, strokes, etc

Black

RNN based Encoder

W]

Brief Introduction of RNN models - LSTM

Memory (Y &
Ct1 O
Forget Input :
Candidate
g;a:te gr;lte memory T
t : t ~ =
Lo | "[Lo] ¢ [tenh]
Hidden state
Ht-1 \ (
|
Input Xt
FC layer with Element-wise

activation fuction

Operator

L Copy

—(—’ Concatenate

Brief Introduction of RNN models - GRU

-t = 0O (Wz . [ht—lamt])
Vi=a (Wr ' [ht—l,ﬂ?t])
h; = tanh (W - [ry * hy—1,x4))

htz(l—zt)*ht_1+zt*7zt

Benchmark Problem: LHC jet tagging

5-class Classifier

e Five different categories are considered \ %%

e Types of jets: P SR -
o Quark (q) p\ Particle Jet Energy depositions
o Gluon (g) in calorimeters
o W boson (W)
o Zboson (Z) e Input features: total 6
o Top (t) o pT - Transverse Momentum
o eta - Pseudo Rapidity
o phi - Azimuthal Angle
o E-Energy
o deltaR - Relative angular

distance w.r.t jet axis
o pdglD - Particle identification
information

Jet tagging LSTM/GRU model: Architecture

e 1 million jets total
e Standard scaled, and organized by particle

e Input:
o Sequence of 20 particles with 6 features each
e Output:

o Probability of 5 jet classes (q,9,W,Z,t)
GRU LSTM

[> Model: "model 3"

[» Model: "model 6"

Layer (type) Output Shape Param #
input_4 (InputLayer) [(None, 20, 6)] 0 Layer (type) Output Shape Param #
1stml (GRU) (None, 16) 1152 input_1@ (InputLayer) [(None, 20, 6)] e
SR SRERsS (DI, 1088 Istml (LSTM) (None, 20, 20) 2160
dropout_3 (Dropout) (None, 64))

flatten_5 (Flatten) (None, 400) 2]
fc7 (Dense) (None, 32) 2080
BUEpi_S1goId. (Dekeg) (None, 5) T output_sigmoid (Dense) (None, 5) 2885
Total params: 4,485 Total params: 4,165
Trainable params: 4,485 Trainable params: 4,165

Non-trainable params: @ Non-trainable params: ©

Loss

Jet tagging LSTM model: performance

Model Loss over Epochs

12 A

11 A

10 |

0.9 1

0.8 |

—— training sample loss
—— validation sample loss

LSTM ROC Curve

10

08

=4
o

Signal Efficiency

o
-

02

g tagger, AUC = 89.7%
q tagger, AUC = 89.9%
w tagger, AUC = 93.3%
z tagger, AUC = 92.1%
t tagger, AUC = 92.9%

04 06
Background Efficiency

08 10

10

Loss

Jet tagging GRU model: Performance

Model Loss over Epochs

12 1

11

10 1

0.9 1

0.8 4

—— training sample loss
—— validation sample loss

120 140

LSTM ROC Curve

104

0.8 4

o
o

Signal Efficiency

=)
FeN

0.2 1

— g tagger, AUC = 90.0%
— g tagger, AUC = 89.9%
- w tagger, AUC = 93.3%
- ztagger, AUC = 92.6%
— ttagger, AUC = 92.9%

T T
0.0 0.2 04 06
Background Efficiency

T T

08 10

1

Benchmark Problem: QuickDraw image classification

5-class Classifier

e Types of images:

o Bees h : (b

o Butterflies L N T T
o Mosquitos . @& ge B 5 #* 3 = 2 - -

o Snails o

o Ants

e Input features(per stroke):
o Pixel coordinates(x)
o Pixel coordinates(y)
o Time (t)

12

QuickDraw LSTM/GRU model: Architecture

e Input:

o Sequence of up to 100 strokes with 3 coordinates (x,y, t)

e Output:

o Probability of 5 picture types (Ants, bees, butterflies, mosquitos, snails)

GRU
Layer (type) Output Shape Param #
;;;;;:16 (InputLayer) [(N::e, 100, 3)] 2]
gru_13 (GRU) (None, 128) 51072
dropout_15 (Dropout) (None, 128) 2]
dense_27 (Dense) (None, 256) 33024
dropout_16 (Dropout) (None, 256) 2]
dense_28 (Dense) (None, 128) 32896
rnn_densef (Dense) (None, 5) 645

Total params: 117,637
Trainable params: 117,637
Non-trainable params: @

LSTM
Model: "model_ 1"
Layer (type) Output Shape Param #
input_4 (Inputlayer) [(None, 100, 3)] o
1stm_4 (LSTM) (None, 100, 128) 67584
dropout_1 (Dropout) (None, 1@, 128) %]
1stm 5 (LSTM) (None, 64) 49403
rnn_densef (Dense) (None, 5) 325

Total params: 117,317
Trainable params: 117,317
Non-trainable params: @

13

QuickDraw LSTM model: Performance

Loss

Model Loss over Epochs

054

0.4 4

034

024

01+

—— training sample loss
—— validation sample loss

v

LSTM ROC Curve

N7

0.8

o
o
\,
\,
S

Signal Efficiency

b4

s

\,
s,

0.2+ T

— ant tagger, AUC = 99.7%

~ bee tagger, AUC = 99.6%

— butterfly tagger, AUC = 99.9%
= mosquito tagger, AUC = 98.8%
— snail tagger, AUC = 100.0%

0.0 0.2 04 06
Background Efficiency

08 10

14

Loss

QuickDraw GRU model: Performance

Model Loss over Epochs

0.9 4

0.8 4

0.7 4

0.6

0.5 |

0.4 4

0.3 1

0.2 4

0.1 1

—— training sample loss
—— validation sample loss

LSTM ROC Curve

10 - =
038 -
206
o
v} g
£ e
w P
o
c o
=
v /’
0.4 1
0.2 1 -
P — ant tagger, AUC = 99.6%
3 ~ bee tagger, AUC = 99.4%
3% — butterfly tagger, AUC = 99.7%
’,-" = mosquito tagger, AUC = 98.5%
73 — snail tagger, AUC = 99.9%
0.0 02 04 06 08 10

Background Efficiency

15

hls4ml Flow

hls4ml

Vivado HLS

Vivado

ML model
(Keras, etc.)

Trained ML model using

Generated C++ code

Synthesize the C code

Run a simulation of the

Synthesize the HDL into

a supported ML library. from converting the ML into HDL (Verilog/VHDL) HDL and the C code. hardware in Vivado
model into HLS4ML Ensure that the result is
layers. the same
[[
N N N

C Synthesis Simulation Hardware

Utilization/Latency Latency Utilization/Timing

Reports reports

We want to minimize resource usage and latency
o Large models use lots of resources, while smaller models have higher latency
o Want to find a balance
Find a precision where resource usage is reasonable and AUC curves look similar

Run the model on an
FPGA

https://docs.google.com/presentation/d/1NXxKLoVqjLSqlccJLfTTgA
we0s5Tnn1gN6DFynOyp94/edit?usp=sharing

Results

Some of the experimental
observations are presented in
the following slides

17

ROC curve for the jet identification task

Signal Efficiency

10° 4

1071 4

1072 3

g tagger, AUC = 83.0%
g tagger, AUC = 86.5%
w tagger, AUC = 92.0%
z tagger, AUC = 88.7%
t tagger, AUC = 91.9%
g_qt tagger, AUC = 85.0%
g_qt tagger, AUC = 86.2%
w_qt tagger, AUC = 89.5%
z_qt tagger, AUC = 87.4%
t_qgt tagger, AUC = 92.0%

103

0.0

0.2 0.4 0.6 0.8 1.0
Background Efficiency

*Solid Line for the
floating point predictions

*Dash-Dot Line for the
quantized predictions at
<16, 6>

ROC curve for the QuickDraw classification task

LSTM - QuickDraw

109 4

*Solid Line for the

o
g 10 ! floating point predictions
o / —— ant tagger, AUC = 99.7%

£ ! —— bee tagger, AUC = 99.6% *Dash-Dot Line for the
e | —— butterfly tagger, AUC = 99.9% quantized predictions at
k) —— mosquito tagger, AUC = 98.8% <16, 6>

“ 10-2 - —— snail tagger, AUC = 100.0%

—-- ant_qt tagger, AUC = 76.1%
—-~- bee_qt tagger, AUC = 71.2%
— -~ butterfly_qgt tagger, AUC = 82.8%
— -~ mosquito_qt tagger, AUC = 71.8%
— -~ snail_qt tagger, AUC = 75.6%

1073 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Background Efficiency

Summary

e Most of the necessary changes are implemented to support Keras LSTM and
GRU models

e \We discussed two benchmark models with 5k and 100k trainable parameters

e Converted hls4ml models perform very similar to the Keras/TensorFlow
models

e Support for streaming |0-type has been added to enable HLS synthesis of
larger models (tested up 120K parameters)

20

Next Steps

e The plan is to use three models (small, medium and large) as benchmark
e Currently we are also working on profiling a medium LSTM model for flavour
tagging
o 40k or more parameters
e Once we get consistent performance with the flavour tagging (medium)
model, we will start wrapping up these studies

21

Thank You!

