RNN in hls4ml

Aaron Wang
University of Washington
12th, July, 2021
APS DPF Presentation

Introduction

- Recursive Neural Network (RNN) models are the best to exploit the sequential structure in a dataset
- Increasing usage of RNN-based algorithms in the particle physics community
 - Fast inference of such algorithms on an FPGA will be crucial in the future
- Our goal is to support Keras/TensorFlow RNN models in hls4ml
 - Past presentations (in 2019) by Phill et. al: <u>talk1</u> <u>talk2</u>

In this presentation

- Training and performance of some benchmark models
- hls4ml conversion: Top level design with blocks and simpler code algo
- Design Constraints
- Results

Overview

- We want to support RNN models of different sizes
- Currently we are working on several LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) models
- Two benchmark models will be discussed
- 1. **Small model** with **5000k** trainable parameters
 - a. Jet-tagging problem
 - Dataset: CERNbox link
- 2. **Large model** with **100000k** trainable parameters
 - a. QuickDraw model
 - Dataset: <u>quickdraw-dataset</u>

Training code: RNN-HLS4ML-paper

What is an RNN?

RNN is a Recurrent Neural Network

- Performs same function for every input of data
- Remembers the immediate past and adds it to the present
- Good at processing sequential data
 - Text, speech, strokes, etc

An unrolled recurrent neural network. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN based Encoder

Brief Introduction of RNN models - LSTM

Brief Introduction of RNN models - GRU

Benchmark Problem: LHC jet tagging

5-class Classifier

- Five different categories are considered
- Types of jets:
 - Quark (q)
 - o Gluon (g)
 - W boson (W)
 - Z boson (Z)
 - Top (t)

- Input features: total 6
 - o **pT** Transverse Momentum
 - eta Pseudo Rapidity
 - o **phi** Azimuthal Angle
 - o **E** Energy
 - deltaR Relative angular distance w.r.t jet axis
 - pdgID Particle identification information

Jet tagging LSTM/GRU model: Architecture

- 1 million jets total
- Standard scaled, and organized by particle
- Input:
 - Sequence of 20 particles with 6 features each
- Output:
 - Probability of 5 jet classes (q,g,W,Z,t)

GRU

LSTM

Layer (type)	Output Shape	Param #
input_4 (InputLayer)	[(None, 20, 6)]	0
lstm1 (GRU)	(None, 16)	1152
fc4 (Dense)	(None, 64)	1088
dropout_3 (Dropout)	(None, 64)	0
fc7 (Dense)	(None, 32)	2080
output_sigmoid (Dense)	(None, 5)	165
 Total params: 4,485		

Layer (type)	Output Shape	Param #
input_10 (InputLayer)	[(None, 20, 6)]	0
lstm1 (LSTM)	(None, 20, 20)	2160
flatten_5 (Flatten)	(None, 400)	0
output sigmoid (Dense)	(None, 5)	2005

Total params: 4,165 Trainable params: 4,165 Non-trainable params: 0

Jet tagging LSTM model: performance

Jet tagging GRU model: Performance

Background Efficiency

0.2

1.0

0.8

Benchmark Problem: QuickDraw image classification

5-class Classifier

- Types of images:
 - Bees
 - Butterflies
 - Mosquitos
 - Snails
 - Ants

- Input features(per stroke):
 - Pixel coordinates(x)
 - Pixel coordinates(y)
 - Time (t)

QuickDraw LSTM/GRU model: Architecture

- Input:
 - Sequence of up to 100 strokes with 3 coordinates (x,y, t)
- Output:
 - Probability of 5 picture types (Ants, bees, butterflies, mosquitos, snails)

GRU

Layer (type)	Output Shape	Param #
input_16 (InputLayer)	[(None, 100, 3)]	0
gru_13 (GRU)	(None, 128)	51072
dropout_15 (Dropout)	(None, 128)	0
dense_27 (Dense)	(None, 256)	33024
dropout_16 (Dropout)	(None, 256)	0
dense_28 (Dense)	(None, 128)	32896
rnn_densef (Dense)	(None, 5)	645

Total params: 117,637 Trainable params: 117,637 Non-trainable params: 0

LSTM

Layer (type)	Output Shape	Param #
input_4 (InputLayer)	[(None, 100, 3)]	0
lstm_4 (LSTM)	(None, 100, 128)	67584
dropout_1 (Dropout)	(None, 100, 128)	0
lstm_5 (LSTM)	(None, 64)	49408
rnn_densef (Dense)	(None, 5)	325

Total params: 117,317 Trainable params: 117,317 Non-trainable params: 0

Model: "model 1"

QuickDraw LSTM model: Performance

QuickDraw GRU model: Performance

hls4ml Flow

- We want to minimize resource usage and latency
 - Large models use lots of resources, while smaller models have higher latency
 - Want to find a balance
- Find a precision where resource usage is reasonable and AUC curves look similar

Results

Some of the experimental observations are presented in the following slides

ROC curve for the jet identification task

*Solid Line for the floating point predictions

*Dash-Dot Line for the quantized predictions at <16, 6>

ROC curve for the QuickDraw classification task

*Solid Line for the floating point predictions

*Dash-Dot Line for the quantized predictions at <16, 6>

Summary

- Most of the necessary changes are implemented to support Keras LSTM and GRU models
- We discussed two benchmark models with 5k and 100k trainable parameters
- Converted hls4ml models perform very similar to the Keras/TensorFlow models
- Support for streaming IO-type has been added to enable HLS synthesis of larger models (tested up 120K parameters)

Next Steps

- The plan is to use three models (small, medium and large) as benchmark
- Currently we are also working on profiling a medium LSTM model for flavour tagging
 - 40k or more parameters
- Once we get consistent performance with the flavour tagging (medium) model, we will start wrapping up these studies

Thank You!