
RNN in hls4ml

Aaron Wang
University of Washington

12th, July, 2021
APS DPF Presentation

Outline

Introduction
● Recursive Neural Network (RNN) models are the best to exploit the sequential structure

in a dataset
● Increasing usage of RNN-based algorithms in the particle physics community

○ Fast inference of such algorithms on an FPGA will be crucial in the future
● Our goal is to support Keras/TensorFlow RNN models in hls4ml

○ Past presentations (in 2019) by Phill et. al: talk1 talk2

2

In this presentation

● Training and performance of some benchmark models
● hls4ml conversion: Top level design - with blocks and simpler code algo
● Design Constraints
● Results

https://drive.google.com/file/d/1b62jf6w-UeJsq2vFQdw1Hm77h_voIb-d/view
https://drive.google.com/file/d/1B8x-6u9xex03hiVMQkCHgDXvCTdbiJQG/view

Overview
● We want to support RNN models of different sizes
● Currently we are working on several LSTM (Long Short-Term Memory) and GRU

(Gated Recurrent Unit) models

● Two benchmark models will be discussed
1. Small model with 5000k trainable parameters

a. Jet-tagging problem

Dataset: CERNbox link

2. Large model with 100000k trainable parameters
a. QuickDraw model

Dataset: quickdraw-dataset

Training code: RNN-HLS4ML-paper
3

https://cernbox.cern.ch/index.php/s/AgzB93y3ac0yuId?path=%2Ffixed
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/anrunw/RNN-HLS4ML-paper

What is an RNN?

● RNN is a Recurrent Neural Network
○ Performs same function for every input of

data
○ Remembers the immediate past and adds

it to the present
○ Good at processing sequential data

■ Text, speech, strokes, etc

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Brief Introduction of RNN models - LSTM

Brief Introduction of RNN models - GRU

● Input features: total 6
○ pT - Transverse Momentum
○ eta - Pseudo Rapidity
○ phi - Azimuthal Angle
○ E - Energy
○ deltaR - Relative angular

distance w.r.t jet axis
○ pdgID - Particle identification

information

● Types of jets:
○ Quark (q)
○ Gluon (g)
○ W boson (W)
○ Z boson (Z)
○ Top (t)

['j_zlogz', 'j_c1_b0_mmdt','j_c1_b1_mmdt',
'j_c1_b2_mmdt' , 'j_c2_b1_mmdt',
 'j_c2_b2_mmdt', 'j_d2_b1_mmdt',
'j_d2_b2_mmdt', 'j_d2_a1_b1_mmdt',
'j_d2_a1_b2_mmdt', 'j_m2_b1_mmdt',
'j_m2_b2_mmdt', 'j_n2_b1_mmdt',
 'j_n2_b2_mmdt', 'j_mass_mmdt',
'j_multiplicity',
'j1_etarel','j1_phirel','j1_pt','j1_e','j1_ptrel','j1_erel','j1
_deltaR','j_index']

8

Benchmark Problem: LHC jet tagging

● Five different categories are considered

5-class Classifier

● 1 million jets total
● Standard scaled, and organized by particle
● Input:

○ Sequence of 20 particles with 6 features each
● Output:

○ Probability of 5 jet classes (q,g,W,Z,t)

9

Jet tagging LSTM/GRU model: Architecture

GRU LSTM

10

Jet tagging LSTM model: performance

11

Jet tagging GRU model: Performance

● Input features(per stroke):
○ Pixel coordinates(x)
○ Pixel coordinates(y)
○ Time (t)

● Types of images:
○ Bees
○ Butterflies
○ Mosquitos
○ Snails
○ Ants

12

Benchmark Problem: QuickDraw image classification
5-class Classifier

● Input:
○ Sequence of up to 100 strokes with 3 coordinates (x,y, t)

● Output:
○ Probability of 5 picture types (Ants, bees, butterflies, mosquitos, snails)

13

QuickDraw LSTM/GRU model: Architecture

GRU LSTM

14

QuickDraw LSTM model: Performance

15

QuickDraw GRU model: Performance

hls4ml Flow

● We want to minimize resource usage and latency
○ Large models use lots of resources, while smaller models have higher latency
○ Want to find a balance

● Find a precision where resource usage is reasonable and AUC curves look similar

C Synthesis

Synthesize the C code
into HDL (Verilog/VHDL)

Co-simulation

Run a simulation of the
HDL and the C code.

Ensure that the result is
the same

Vivado Synthesis

Synthesize the HDL into
hardware in Vivado

Implement on FPGA

Run the model on an
FPGA

HLS4ML project

Generated C++ code
from converting the ML

model into HLS4ML
layers.

ML model
(Keras, etc.)

Trained ML model using
a supported ML library.

C Synthesis
Utilization/Latency
Reports

Simulation
Latency

Hardware
Utilization/Timing
reports

hls4ml Vivado HLS Vivado

https://docs.google.com/presentation/d/1NXxKLoVqjLSqIccJLfTTqA
we0s5Tnn1gN6DFynOyp94/edit?usp=sharing

Results
Some of the experimental
observations are presented in
the following slides

17

*Solid Line for the
floating point predictions

*Dash-Dot Line for the
quantized predictions at

<16, 6>

ROC curve for the jet identification task

ROC curve for the QuickDraw classification task

*Solid Line for the
floating point predictions

*Dash-Dot Line for the
quantized predictions at

<16, 6>

Summary

● Most of the necessary changes are implemented to support Keras LSTM and
GRU models

● We discussed two benchmark models with 5k and 100k trainable parameters
● Converted hls4ml models perform very similar to the Keras/TensorFlow

models
● Support for streaming IO-type has been added to enable HLS synthesis of

larger models (tested up 120K parameters)

20

Next Steps

● The plan is to use three models (small, medium and large) as benchmark
● Currently we are also working on profiling a medium LSTM model for flavour

tagging
○ 40k or more parameters

● Once we get consistent performance with the flavour tagging (medium)
model, we will start wrapping up these studies

21

Thank You!

22

