Search for electroweak production of supersymmetric particles in final states with two boosted hadronically decaying bosons and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV

Joseph Mullin

6/29/2021

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-022/

Introduction

- Target neutralino and chargino production with large Δm .
- Signature
 - 2 boosted W/Z/h + MET
 - Fully hadronic final states (qqqq or bbqq)
 - Large branching ratio
 - Compared to leptonic final states which are more explored conventionally
 - Allows for increased signal
 - Increased signal -> increased background
 - Z+jets
 - Need to be able to suppress this.
 - Boosted bosons are reconstructed
 - \circ $\Delta R = 1.0$ (Large-R jets)
 - Jet substructure
 - Tight kinematic selection
 - This is a new signature in ATLAS/CMS

Introduction - Target Models

- Baseline MSSM scenario
- Wino or Higgsino production
- Both simplified (100% BR) models and more general cases are considered.

Boson Tagging

W/Z -> qq tagging (https://cds.cern.ch/record/2724149)

- Cuts in three variables with p_⊤-dependant cut values
 - Mass window
 - Upper cut on D₂ 2 prongness (calculated using the energy correlation function)
 - Upper cut on n_{trk} track multiplicity
- Working point was reoptimized loosened n_{trk}
 - Mass and D₂ at official 50%WP
 - Rejection is about 10-100 per jet
 - Asking 2 bosons improves S/N by ~O(1000).

Event Selection - Analysis Strategy

- Preselection:
 - o $n(large-R jets) ≥ 2, n_{lepton}=0, MET>200 GeV$
 - Cleaning cuts (e.g. non-collision BG veto)
- 2 categories
 - 4Q : (W/Z)(W/Z) -> qqqq
 - 2B2Q : (W/Z)(Z/h) -> qqbb
 - Split is based on presence or absence of 2b tagged large-R jet.

- 10 SRs are defined
 - This accommodates WW/WZ/Wh/ZZ/Zh final states.
- Aimed to minimize model dependence.
 - Especially on BRs.

Event Selection

Further BG rejection cuts:

- Veto b-jets outside of large-R jets
- minΔφ(j,MET)>1.0
 - Selects spherical event topology
- m_{eff} cut (scalar sum of MET, J₁, and J₂ p_T)
 - Selects events with hard kinematics

Cuts are found by optimizing at (Wino, Bino) = (800, 100) GeV.

Shown on the right, optimizing m_{eff}.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/AT LAS-CONF-2021-022/

Background Composition

Reducible BG account for 90%

- V+Jets
 - 2 ISR fat jets
- 1 ISR and 1 real boson jet Irreducible BG account for 10%
 - o tt+X, VVV
 - 0 ISR and 2 real boson jets

Background Estimation - Reducible backgrounds

- Reducuble BGs include a "Fake Boson" originating from ISR jets
 - All have similar jet compositions
 - Therefore they are treated as a single BG component
- Semi-data driven method
 - CR is defined by inverting the W/Z tagging of the SR.
 - MC used to extrapolate CR->SR
- MC extrapolation is validated using kinematically equivalent 1L/1Y regions
 - Dominant BG in each region has a similar shape
 - Z(->vv) in 0L ~ W(->lv) in 1L ~ y+jets in 1Y
 - Therefore TFs are also similar
 - Confirmed by MC and data
- So validate modeling in $TF(1L/1Y) \sim validating modeling of in <math>TF(0L)$.

Multijet Background

- Characterized by a fake MET from mismeasured jet energy
 - Low min∆φ
- Multi-jet is very difficult to estimate.
 - Believed to be very small though.
- ABCD method
 - Use W/Z->qq tagging and min∆φ as ABCD variables.
 - \circ Cuts are min $\Delta \phi$ >1.0 and tagged boson>1.

Multijet Background

Due to low statistics in Data and MC prediction was made for CR.

- This has higher statistics than SR
- Relative fraction will not change much from CR to SR.
 - Only need to show negligible contribution in CR.
- For MET>200 GeV this was found to be nearly negligible.
 - -1.61 ± 1.80 for MET>200 GeV
 - -0.950± 0.96 for MET>300 GeV
- Multijet is negligible in the CR therefore must be negligible in SR.

Results - Unblinded SRs

Results

- Unprecedented limits for large Δm.
 - 300-400 GeV improvement in the benchmark simplified models compared to best limits by ATLAS/CMS.
 - Up to 1050 (900) GeV excluded for wino (higgsino) production.
 - Confirmed with various LSP types and BR assumptions

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTE S/ATLAS-CONF-2021-022/

Conclusion

- Boosted di-boson+MET using full Run 2 data.
 - Fully hadronic final states give large Branching Ratios.
 - Boson reconstruction using large-R jets and jet substructure.
 - Allows for strong BG reduction
 - New signature in ATLAS/CMS SUSY search.
- Covered a variety of models, including:
 - Conventional Wino-NLSP/Bino-LSP simplified models.
 - Models with various production modes, LSP types, and BR assumptions.
- No data excess in the SRs
- Most stringent limits set for scenarios with large Δm.
 - 300-400 GeV improvement
 - Up to 1050 (900) GeV is excluded in the wino (higgsino) mass.

Backup

Z/h->bb tagging

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/AT LAS-CONF-2021-022/

Z/h -> bb tagging (https://cds.cern.ch/record/2268678)

- B-tagged VR track jet used as b-multiplicity in large-R jet.
- J_{bb} mass is corrected by leading muon p_T
- Selections:
 - 2 VR track jets pass 85% eff. WP within large-R jet
 - Mass window