HEPfit: INTRODUCTION

Basic ideas behind HEPfit:

- combine state-of-the-art theoretical calculations and current experimental data to
 - perform a Bayesian fit of model parameters, i.e. obtain a numerical representation of the (joint) p.d.f of model parameters (and observables) given priors for parameters and exp. data
 - predict observables
 - compare models using e.g. information criteria

for any model \supseteq Standard Model

Likelihoods in HEPfit: inputs

- Experimental likelihoods can currently be implemented as:
 - Individual measurements with "exact" likelihood (Gaussian, ...)
 - 1D or 2D measurements with "numeric" likelihood (1D or 2D Histograms)
 - Binned measurements with "exact" likelihood, including correlations
 - Multi-dimensional measurements with "exact" likelihood, including correlations
- Work in progress to implement full likelihoods using the DNNLikelihood.

Likelihoods in HEPfit: outputs

- The output of a successful MCMC run is a numerical approximation of the joint p.d.f. for model parameters and observables, represented as:
 - Averages and correlations for all parameters;
 - Averages (and correlations) for all (correlated) observables;
 - 1D and 2D histograms and highest probability regions corresponding to $1\sigma, 2\sigma, 3\sigma, ...;$
 - Optionally, the full MCMC chains, useful for combination with more data;
 - In progress: the corresponding DNNLikelihood

Likelihoods meeting, 12/5/2021

EXAMPLE

- Global fit of $b \rightarrow s \parallel data$:
 - 79 nuisance parameters (20 hadronic power corrections + 12 SM/hadronic parameters + 47 correlated form factors)
 - 159 experimental observables (28 1-dimensional +
 10 8-dimensional correlated + 3 6-dimensional correlated +
 4 2-dimensional correlated + 3 3-dimensional correlated +
 1 4-dimensional correlated + 3 4-dimensional correlated)
 - Several Parameters of Interest