First Results from CMS and Perspectives for Heavy Ions

Outline

 Exciting QGP properties accessible from first Pb+Pb collisions (0.2 → 2.76 TeV)

Multiplicity

Spectra

Correlations

Dimuons

Jets

- Analysis of p+p reference measurements
- Capabilities for Pb+Pb measurements

CMS Detector

CMS Tracking System

- Inside 3.8T field
- Hit reconstruction efficiency above 99%
- >97% of channels operational
- Coverage over $|\eta| < 2.4$ with ≥ 3 pixel and ≥ 10 strip hits

Tracker Performance

Pixel charge

Silicon strip PID

 CMS tracker well-understood after first collisions, showing excellent agreement with simulations.

QCD studies with CMS

Integrated luminosity at 7 TeV ~ 3.3 pb⁻¹

- p+p collisions at 0.9, 2.36, and 7 TeV
- First measurements
 performed with
 10,000 200,000
 minimum bias events

Minimum bias event selection

• Trigger:

- Single hit BSC
- In-time with BPTX

Offline:

- 1 tower with >3 GeV in each HF (forward calo)
- Beam-halo rejection from BSC timing
- Vertex from pixel track(s)

BSC: $3.23 < |\eta| < 4.65$

HF: $2.9 < |\eta| < 5.2$

1. Charged multiplicity

• Three analysis techniques:

Sensitive to different systematic effects

$dN_{ch}/d\eta$ results

Results from three methods weighted by uncorrelated errors, averaged, and symmetrized

Collision energy dependence

 Charged multiplicity grows more quickly with energy than predicted by most models.

Implications for Pb+Pb

 Steeper-than-expected energy dependence in p+p suggests that lowest Pb+Pb estimates are unlikely.

2. Charged p_T spectra

p+p tracking

Excellent performance even at very low momentum pt ~ 150 MeV/c

Pb+Pb tracking

Combination of pixel triplet tracks (p_T =0.2-3.0 GeV/c) and full tracks including the strip layers (p_T =0.9-100s of GeV/c)

Charged hadron dN/dp_T results

- Results well-described by Tsallis fit function
 - Exponential (low-p_T)
 - Power-law (high-p_T)
- As expected, spectrum is "harder" at higher energy

^{*} New preliminary CMS result out to 140 GeV/c!!

Strategy for high-p_T spectra

- Events are classified by the E_T of the leading anti-k_T calojet (R=0.5) using MCbased jet energy corrections
- Extend p_T-reach of spectra with HLT_Jet15U sample.
- Determine normalization with respect to pre-scaled MinimumBias sample

Leading-jet E_T Distribution

The leading-jet distribution for the Jet15U-triggered sample is normalized per MB event by matching the integral above E_T =60 GeV with the distribution for the pre-scaled MinBias sample.

HLT_Jet15U is >99% efficient above ~40 GeV

Extending Reach with Jet Trigger

Same normalization applied to p_T spectra from HLT_Jet15U triggered sample

Comparison to published result

Consistent within statistical + systematic errors

3.1% band excludes the contribution from the common event selection

Comparison to generator tunes

Factor of \sim 2 between different generator tunes at high p_T .

Most consistent with PYTHIA-8 over the full p_T range

2.76 TeV Reference

Extend 0.9 TeV measurement to $p_T \sim 20$ GeV

Direct interpolation between three energies at low p_T

 x_T -scaling and/or tuned NLO for high- p_T 2.76 TeV spectra interpolation

How to control 'fakes' down by 14 orders of magnitude? Verify calo energy deposit.

Predictions for Pb+Pb Run-1

Run-1 p_T-reach: \sim 0.2-50 GeV/c with \sim 25M events

3. Two-particle correlations

$$R(\Delta \eta, \Delta \phi) = \left\langle (N-1) \left(\frac{S_N(\Delta \eta, \Delta \phi)}{B_N(\Delta \eta, \Delta \phi)} - 1 \right) \right\rangle_N$$

Correlations in particle production related to hadronization process

Comparison to models

$$R(\Delta \eta, \Delta \phi) = \left\langle (N-1) \left(\frac{S_N(\Delta \eta, \Delta \phi)}{B_N(\Delta \eta, \Delta \phi)} - 1 \right) \right\rangle_N$$

Collision energy dependence

$$R(\Delta\eta,\Delta\phi) = \left\langle (N-1) \left(\frac{S_N(\Delta\eta,\Delta\phi)}{B_N(\Delta\eta,\Delta\phi)} - 1 \right) \right\rangle_N$$

Rapid growth of "jet-like" component with \sqrt{s}

Energy dependence (cont'd)

 Effective "cluster size" consistent with trend, significantly in excess of PYTHIA

 "Cluster width" similar to lower energy measurements

Correlations in Pb+Pb

- Large Δη acceptance of CMS tracker advantageous for exploring HI physics
- Away from the jet peak, Fourier decomposition easier

Fourier decomposition

Initial State Fluctuations

• Combination of good track reconstruction and large rapidity coverage will enable more detailed studies of e.g. triangular flow vs. p_T

4. Dimuons in cMs

Expected Statistics

For 1-10 µb⁻¹ in Run-1:

250(2500) J/ψ , S/B ~1.12, S/ $\sqrt{(S+B)}$ ~10 (to 30)

- Suppressed at RHIC but understanding is not clean. Regeneration?

30(300)Y, but S/B ~ 0.12, S/ $\sqrt{(S+B)}$ ~1 (to 4)

- CMS resolution allows separation of the bound states
- Sensitivity to different melting temperatures?

 $|\eta| \approx 0$, $\sigma_{mass(Y)} \approx 54 \text{ MeV}$ $|\eta| < 2.4$, $\sigma_{mass(Y)} \approx 90 \text{ MeV}$

10(100) Z⁰ expected, **S/B**~**20**, $S/(\sqrt{S+B})$ ~ 3 (to 10)

- First weak boson measurement in heavy ion !
- Easiest in terms of S/B. Sensitive to PDF. Towards a Z-jet analysis

J/psi acceptance

5. But wait, there's more.... Jets!

Jet properties

- I. Jet shapes (p+p result shown)
- 2. Jet fragmentation functions (next slide)

Fragmentation functions

Simulations

Nominal Run 5.5 TeV

- Not too many γ-jets in Run-I (event displays not FF)
- Dijet fragmentation functions sensitive to quenching.
- More complicated without photon → initial parton energy.

And finally ... PID!

Summary

- CMS is a remarkable instrument for studying QCD physics in p+p and Pb+Pb
- First p+p results published at 0.9, 2.36, and
 7 TeV. Important references for HI.
- Precision measurements of rare probes now appearing
- Exciting prospects for early* Pb+Pb physics in Run-1 in 8 weeks!

^{* 50,000} events ~ 10 minutes of colliding beams

Backup Slides

HF event selection efficiency

Based on ZeroBias data + 1 pixel track

Event selection efficiency

PYTHIA 0.9 TeV

PYTHIA 2.36 TeV

PHOJET 0.9 TeV

PHOJET 2.36 TeV

Charged-particle multiplicity

Generated particles after event selection $|\eta| < 2.5$

Non-single diffractive (NSD) selection efficiency $|\eta| < 2.5$

CMS

Diffractive Components

PAS-FWD-10-001

Energy dependence of $\langle p_T \rangle$

High-p_T Spectra Systematics

3.5 1.2 1.5	
7.2	
1.5	
2.2	
0.0 - 2.8	
0.3 - 3.0	
1.0	
0.3 - 2.7	Systematic errors vs. p _T
a 0.0 - 3.3	10
4.7 - 7.5	7.5 (constant contributions no
	0.0 - 2.8 0.3 - 3.0 1.0 0.3 - 2.7 0.0 - 3.3

Contributions are added in quadrature

Including ATLAS tune

x_T scaling: empirical expectation

$$E\frac{d^3\sigma}{d^3p} = F(x_T)/p_T^{n(x_T,\sqrt{s})} = F'(x_T)/\sqrt{s}^{n(x_T,\sqrt{s})}$$

slow evolution of exponent: $n\sim5-6$ - running α_s , FFs, PDFs

$$x_T = 2p_T/\sqrt{s}$$

Fit this quantity: $\sqrt{s}^{n(x_T,\sqrt{s})} E \frac{d^3\sigma}{d^3p}$

with a power-law: $p_0 \cdot [1 + (x_T/p_1)]^{p_2}$

for $p_T > 2$ GeV/c and various values of n.

minimum χ^2 for n=5.1 including all results (n=5.5 for all results excluding CMS 7 TeV)

x_T scaling: empirical expectation

NLO

More on triangular flow

Triggered correlations

What is a correlated yield? Underlying event intimately tied to presence of high- p_T track (or jet)

Underlying event activity

Strong turn-on of particle production in transverse region as a function of track-jet p_T

Strange Particle Spectra

More on jet shapes

Radius