

The ALICE maiden run 2010: first results and outlook

Federico Antinori
(INFN Padova, Italy)
on behalf of the ALICE Collaboration

Contents

- Running configuration
- First results and prospects from pp
- Outlook for the Pb-Pb run

Conclusions

Detector configuration

- ITS, TPC, TOF, HMPID, MUON, V0, To, FMD, PMD, ZDC (100%)
- TRD (7/18)
- EMCAL (4/12)
- PHOS (3/5)
 - at nominal T (-25 C)
- HLT (60%)

Trigger configuration

- minimum bias interaction trigger
 - Si pixels (two inner layers of ITS) OR V0 (scintillators)
 - → ~ at least one charged particle in 8 pseudorapidity units
- + rare triggers:
 - single-muon in muon arm
 - high multiplicity (> 65 charged detected in three central units of η)
- activated in coincidence with the bunch crossings (BX):
 - BX with bunches from both sides
 - for control BX with bunch from side A or C only
 - for control BX with no bunches
- + a fraction of 'bunch-crossing' trigger (no condition on trigger detectors)
 - for control
 - for diffraction studies
- no further event rejection in High Level Trigger

ALICE running so far

- 2009 (0.9 and 2.36 TeV)
 - $\sim 10.3 \, \mu b^{-1}$

~ 500 k min bias

• 2010 (so far)

- ~ 700 M min bias triggers
- ~ 50 M single muon triggers
- ~ 15 M high multiplicity triggers

Six papers so far

- First proton-proton collisions at the LHC as observed with the ALICE detector:
 measurement of the charged particle pseudorapidity density at sqrt(s) = 900 GeV
 - → K Aamodt et al: EPJ C 65 (2010) 11, arXiv:0911.5430
- Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC
 - → K Aamodt et al: EPJ C 68 (2010) 89, arXiv:1004.3034
- Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 7
 TeV with ALICE at LHC
 - → K Aamodt et al: arXiv:1004.3514, accepted by EPJ C
- Midrapidity antiproton-to-proton ratio in pp collisions at sqrt(s) = 0.9 and 7 TeV measured by the ALICE experiment
 - → K Aamodt et al: PRL 105 (2010) 072002, arXiv:1006.5432
- Two-pion Bose-Einstein correlations in pp collisions at sqrt(s) = 900 GeV
 - → K Aamodt et al: arXiv:1007.0516, submitted to Phys. Rev. D
- Transverse momentum spectra of charged particles in proton-proton collisions at sqrt(s) = 900 GeV with ALICE at the LHC
 - → K Aamodt et al: arXiv:1007.0719, accepted by Phys Lett B

$dN_{ch}/d\eta$ vs. \sqrt{s}

fits well

Significantly larger increase from 0.9 to 7 TeV than in MCs

Increase in dN _{ch} /dη in	
$ \eta $ < 1 for INEL > 0	
arXiv:1004.3514	

√s	ALICI	E (%)	MCs (%)
0.9 → 2.36 TeV	23.3	0.4 _{-0.7} +1.1	15 – 18
0.9 → 7 TeV	57.6	0.4 _{-1.8} +3.6	33 – 48

Multiplicity Distributions

- Tail of the distribution much wider than expected by most MCs
- Excellent agreement between ALICE and CMS

Momentum Distributions

- dN_{ch}/dp_T
 - Seems to get harder towards midrapidity / smaller rapidity window
 - Modified Hagedorn function fits full range
 - Exponential fits above 3 GeV/c
- $< p_T > vs. N_{ch}$
 - Perugia-0 reproduces distribution for p_T > 0.5 GeV/c
 - But not for $p_T > 0.15 \text{ GeV/c}$
 - → Soft particle production important to measure (strong point of ALICE)

HBT interferometry

R_{inv} increases v multiplicity

- R_{inv} ~ flat v centrality
 - in contrast with STAR, E735

NB: STAR, E735 both used flat baseline similar results in ALICE when using flat baseline

→ jet-like correlations are important (at least at the LHC)

Antiproton-to-Proton Ratio

- Can one stop a proton 'on its track' at LHC?
- Where does the conserved baryon number reappear after the pp collision?

```
z^a \rightarrow e^{-a\Delta y} = e^{-(1-\alpha)\Delta y} (\Delta y \gg 1)

\alpha = \text{intercept of relevant Regge trajectory}

\Delta y = y_{\text{beam}} - y_{\text{baryon}} = \text{`rapidity loss'}
```

Fragmentation function f(z) of baryon number

```
- Di-quark qq: z^2 \Rightarrow \alpha = -1 \dots -0.5, small \Delta y

- Single q: \sqrt{z} \Rightarrow \alpha = 0.5, medium \Delta y

- Baryon junction? (no valence q): \alpha = ??; large \Delta y??
```

Veneziano: $\alpha \approx 0.5$ others: $\alpha \approx 1$ (pQCD estimates, σ (p-pbar annihilation), 'odderon') $\alpha \approx 1 \Rightarrow f(y) = constant$, pbar/p < 1 at all energies (< 0.93 at LHC)

```
G.C. Rossi and G. Veneziano, Nucl. Phys. B123, (1977) 507 B.Z. Kopeliovich, Sov. J. Nucl. Phys. 45, 1078 (1987)
```


Antiproton-to-Proton Ratio (2)

- Very challenging measurement
 - Measure the ratio to 1% precision
- Assess material budget from data
- pbar-nucleus cross-section not consistent between transport codes

Antiproton-to-Proton Ratio (3)

- Results show no p_T dependence for both energies
 - Results are compared with model predictions with different BN transport mechanisms
 - MCs with enhanced stopping do not reproduce data
- Energy dependence of the ratio parametrized based on the contribution of different diagrams describing the p(bar) production (pair production at mid-rapidity and BN transfer)
 - Junction intercept set to 0.5
 - Little room for additional diagrams which transport baryon number over large rapidity gaps

Particle Identification

- Use ITS, TPC and TOF for identification of charged hadrons
- Identified particle spectra
 - Baseline for HI
 - Tuning of MC generators
- Identified particles used in further analysis (e.g. strange particles)

Identified Particle Spectra

- Spectra from different detectors consistent
- Levi (Tsallis) function fits the data at low p_T

$$\frac{dN}{dp_T} \alpha p_T \left(1 + \frac{m_T - m}{nT_l} \right)^{-n}$$

- Sum of fits (π+K+p) matches well with dN_{ch}/dp_T (all charged) result
- Fit also allows to extract integrated yields

Hadron Yields

- Yields of π , K, p as function of p_T (here for pos. particles, similar for neg.)
- Pions reasonably described by Phojet, Pythia D6T, Perugia-0
- Kaon yield underestimated above p_T of 1 GeV/c
- Proton yield underestimated except by Pythia D6T

Strange Particle Yields

- Yields of K_0^S , Λ , Ξ as function of p_T
- Pythia 6 (D6T, ATLAS-CSC, Perugia-0) and Phojet underestimate overall yields
- Larger discrepancy with increasing particle mass, strangeness and p_T

F Antinori

Λ/K⁰_S ratio 900 GeV

- very good agreement between STAR (200 GeV) and ALICE (900 GeV)
- very different from CDF (630/1800) and UA1 (630) for $p_T > 1.5 \text{ GeV}$
- UA1(630) and CDF(630) don't agree either ...

to be further investigated (different triggers, acceptance, feed-down correction?)

...and much more to come...

Charm at 7 TeV

Charm at 7 TeV

$$J/\psi \rightarrow \mu^+\mu^-$$

- Acceptance
 - -2.7 < y < 3.8
 - Starting from $p_T \sim 0$
- Yields without absolute normalizations
- Compared to an extrapolation based on
 - CEM parameterization
 - J/ψ p_T measurement of CDF
 - Fit extrapolation uses <p_T²> vs. √s dependence
- Dielectron analysis (at midrapidity) ongoing

Extrapolation: J. Phys. G 32 (2006) 1295

Prospects

- MB measurements at 7 TeV
 - dN_{ch}/dη for INEL and NSD (presently only "INEL>0")
 - dN_{ch}/dp_T , $< p_T > vs. N_{ch}$
 - Two-Pion HBT
- Underlying event
 - Transverse regions to leading track
 - Event topology
 - Classify topologies, e.g. transverse sphericity S⊥:

large S⊥:

Prospects (2)

- π⁰ with calorimeters
 - Calibration still ongoing
- Jet reconstruction
- High-multiplicity physics
 - Enhanced by highmultiplicity trigger

Outlook for Pb-Pb run

- expected luminosity ~ 2 orders of magnitude below nominal
 - $-10^{27} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \rightarrow 10^{25} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
 - ~ /10 from number of bunches
 - ~ /10 from increased beam size (lower energy, less focussing)
 (see talk by John Jowett)
- expected data sample?
 - depends critically on overall duty factor and number of days at 10²⁵
 - e.g.: 20 days at 50 Hz min bias at 20% overall duty factor
 → ~ 1.5 10⁷ min bias events
 (as opposed to target of a few 10⁷ central!)
 - caveat: any of the parameters could swing up or down...

Ready for high data rates

- extensive tests at Point 2 with artificially created Pb-Pb-like event sizes
 - verify correct operation of DAQ/Trigger
 → OK (3 hours operation without problems)
 - test data transfer bandwidths

→ at expected luminosity for this year we should not even need HLT filtering

Physics reach?

- global event properties
 - multiplicity
 - v2
 - HBT
 - bulk strangeness
- with a p_⊤ reach dependent on statistics...
 - particle correlations
 - nuclear modification factors
 - strange, identified particle spectra
- a first glimpse of hard probes?
 - jets
 - J/ψ
 - heavy flavour

v₂ measurement studies

Standard event-plane method

500 HIJING events centrality b = 8fm multiplicity <M> = 1900integrated $v_2 = 3.3\%$

Lee-Yang Zero method

1100 HIJING event centrality b = 9fm multiplicity <M> = 1200integrated $v_2 = 6\%$

red – modified LYZ method (J-Y Ollitrault)

ρ , ϕ , K^* , K^0_s , Λ , Ξ , Ω ...

medium modifications of mass, widths

Quarkonia

- critically dependent on integrated luminosity...
- taking, as an example:
 - $-2 \mu b^{-1}$
 - no suppression, no enhancement
 - →a few 1000s J/ψ
 - say 5 centrality bins → significance ~ 15-20
 - out to 6-7 GeV pT?
 - →ψ' marginal...
 - →a few 10s of Y at significance ~ 5?

What about charm?

expected performance for <u>10</u>⁷ central Pb-Pb events at 2.75 TeV:

- for O(10⁶) central, ~ multiply errors by 3
- → needs as much statistics as possible!

Jet statistics in pilot Pb run

Jets are copiously produced...

Conclusions

- the ALICE maiden run is ongoing succesfully
 - experiment is in stable operation
 - it is producing good quality data
 - first physics results in pp

- first Pb-Pb run should provide basic information on global event properties at LHC
 - + a glimpse of harder physics...
- we are ready for the Pb beam…

