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Motivation

* Non-perturbative effects play a decisive role in string phenomenology.
Since the 80s, they have been used to stabilize moduli.

This role continues in recent times, e.g. gaugino condensation on branes is
a key element in many proposed dS constructions e.g., KKLT/LVS.

Non-perturbative effects localized on branes introduce subtleties:
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Supersymmetry suggests how to regularize the action
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Only if this UV divergence is properly regularized can we extract physically meaningful results.



Motivation

* Our work is a continuation of this quest. Codimension = 2 branes introduce
new subtleties, but a properly regularized, local action is finally obtained.

FAQ: Gaugino condensation is an IR phenomenon, what is the point of this
microscopic (10d) treatment?

What this 10d treatment teaches us is how the brane gauginos interact with
the bulk fields regardless of whether the gauginos condense or not.

4d EFT arguments alone do not tell us anything about small couplings, e.g.,
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Motivation

* An accurate description of brane-bulk interactions is particularly crucial in
string theory because of the Dine-Seiberg problem:
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Weak coupling vacua necessitate small numbers in the EFT, e.qg., in KKLT:

V(T) dS/S’UgY V(T)$( 1 %Woe"T_F%e" 2T) + #_:'2'3

# = warp factor: #4 $W,$e ™% 1

- To T A microscopic treatment is necessary
: for substantiating these constructions
as well as quantifying corrections.




Motivation

It has been argued that an &(1) fraction of the compactification is singular

. Resolution of such singularity would necessarily
modify the compactification geometry

[See Hebecker’s talk on
the “singular bulk” problem]

A regularized, local brane action is needed to capture the interactions
among the brane and bulk fields which are smeared in the 4d EFT.

Our results are general for flux compactifcation with branes, but for the
sake of presentation, KKLT will be used as a proxy.



Brane Gauginos in 10d



10d no-go theorems

Consider Einstein equation in 10d and its trace over 4d indices:
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o For awarped ansatz: ds?,= #2(y) (#.$dx" dx3+ g, dy™dy")
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Useful for no-go theorems: most sources have A>0!
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10d no-go theorems

KKLT: uplift from gaugino condensate and anti D3-branes
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* D3 easily computed from the D3-brane world-volume action
* % - inferred from the D7-brane action with %4 %6 $ e’

Claim: both * -*¢ and * P2 are strictly positive!? “Flattening”??

Problem: calculations of * ** were UV divergent and regularization dependent!!
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Brane Gaugino Action

A goal of our work IS to properly
regularize the brane action such that physically meaningful finite
quantities e.g. *:"* $ (T™ " T.) from the D7-action can be computed
and compared with 4d SUGRA expectation:
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The action was known up to order %8 in gauginos
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Problem: this action diverges if used to order !984°
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For clarity: gs= #(y) = 1



Brane Gaugino Action

Unlike the codimension 1 case , the “perfect square
structure” leaves us with a non-local tail

d$G=2d$j=2¢"'2 $2d $F"@ | dG=0.
IG! 2|2 % |2P(j)|]>? — 5 1z ° approaching the brane locus
Similar non-locality appears in where the brane-

localized quartic gaugino term depends on the brane transverse volume.

These actions are at best approximations where effects that should be
localized to D7-branes have been smeared over the internal space.

For reasons discussed above, we need a microscopic description to
accurately capture the interactions among localized sources and bulk fields.



Brane Gaugino Action

Regularizing the D7 action while respecting locality turns out to be
very challenging and has been completed only recently
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Only the last term diverges (for i=j), but it also contains crucial
finite contributions from (self) intersections of D7-stacks
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CY intersection numbers: 3 ;= ';4';4J, [ ]5H®&D



A finite local brane gaugino action

With this insight, we can write a local finite action:
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A finite local brane gaugino action

With this insight, we can write a local finite action:
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With this regularized action, we have done further to:

1. Write Sin a 10d covariant way: {%#3,J} . 64

2. Check that Sreduces to Sy g4rs UpON CY compactification

3. Compute * ™ and check that: ' ,$ * =' «r



10d Covariant Action

Hamada, Hebecker, Shiu, PS, ’'18, '21



Covariant action
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This is not 10d covariant: % are 4d gauginos; J, #;and 3 j; are
defined with respect to the internal CY. We should use

6;= %7 (;

(i IS a covariantly const. spinor on the holomorphic D7i-cycle
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Covariant action
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To see how 3 ; can be expressed in terms of the internal spinor:

Ko © [1T[]"9= aO()Td= F(N)"J.
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The covariantly constant internal spinor ( satisfies:

Dm,Dp]'! =0 <z T°Rmn! + Fpp! =0

Putting things together: Ky =" i—L' dy " G ! ] ) (POt 1) T



Covariant action
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After some very messy (Fierz) manipulations:
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Qod - Udsugra UPON CY compactification

Hamada, Hebecker, GS, Soler, '18, 21
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Solving for G, this action can be casted in 4d N=1 SUGRA with:

K=" 2log3 (T),B) " log ["i(+" #] , W= G4#, (M=T%$3.

where 3 ,3,3)«,3 )« areb-, 4-, 2-, O-volumes (intersection numbers) of the CY
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Compute * * 7 (and * D_3) from 10d

Hamada, Hebecker, GS, Soler, '19
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Given our finite action, one can revisit the 10d analysis of KKLT
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’ volume T

10d KKLT step 0: * =* kP =

(No-scale) Minkowski vacua
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Given our finite action, one can revisit the 10d analysis of KKLT
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10d KKLT step 1: * =* " computed from S, o

*
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Same as KKLT AdS result on-shell
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Given our finite action, one can revisit the 10d analysis of KKLT
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- E( T. + rrnn) - ( 2 W = scaling w/
volume T

10d KKLT step 1: * =* " computed from S, o

*

1 1 Subleading in 1/T terms
C Lt e T Zwe T+ —e' 7T come from renormalization

( T ) 2T of gauge couplings

Same as KKLT AdS result on-shell
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Given our finite action, one can revisit the 10d analysis of KKLT
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’ volume T

10d KKLT step 2; * = * % 4 % D3

Contribution from * P2 is negligible: #8(ysz)* P3/ 0

Same off-shell formula as in step 1, different on-shell result
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Summary



Summary

We have discussed several motivations that necessitate a microscopic
description of brane-localized non-perturbative effects.

We have completed the D7-brane action for gauginos and their coupling to
3-form flux up to the quartic order.

The properly regularized action is free of divergences & local: a necessary
first step for quantitative studies of flux compactification with branes.

This microscopic action 1) reduces upon Calabi-Yau compactification to:
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and 2) the 10d computation of © 4, matches with 4d results of KKLT.

It would be interesting to confirm our results with a 10d Noether procedure
or by completing the --symmetric D7-brane action
to quartic order.



