Microscopic Description of Brane Gauginos

Gary Shiu
 University of Wisconsin-Madison

Based on joint work with Yuta Hamada, Arthur Hebecker, and Pablo Soler:

- "On brane gaugino condensates in 10d," JHEP 1904, 008 (2019) [arXiv:1812.06097 [hep-th]].
- "Understanding KKLT from a 10d perspective," JHEP 1906, 019 (2019) [arXiv:1902.01410 [hep-th]].
- "Completing the D7-brane local gaugino action," [arXiv:2105.11467 [hep-th]].

Motivation

- Non-perturbative effects play a decisive role in string phenomenology. Since the 80s, they have been used to stabilize moduli.
- This role continues in recent times, e.g. gaugino condensation on branes is a key element in many proposed dS constructions e.g., KKLT/LVS.
- Non-perturbative effects localized on branes introduce subtleties:

$$
\begin{aligned}
& S_{G} \sim-\int_{M^{11}} d^{11} x \sqrt{-g}\left(G_{I J K L} G^{I J K L}-\delta\left(x^{11}\right) G_{A B C 11} j^{A B C}\right) \\
& G_{A B C 11} \sim \delta\left(x^{11}\right) j_{A B C} \quad \Rightarrow \quad S_{G} \sim \delta(0)
\end{aligned}
$$

Supersymmetry suggests how to regularize the action

$$
S \sim-\int_{M^{11}} d^{11} x \sqrt{-g}\left(G_{A B C 11}-\frac{1}{2} \delta\left(x^{11}\right) j_{A B C}\right)^{2} \quad[\text { Horava, Witten, '96] }
$$

Only if this UV divergence is properly regularized can we extract physically meaningful results.

Motivation

- Our work is a continuation of this quest. Codimension ≥ 2 branes introduce new subtleties, but a properly regularized, local action is finally obtained.
- FAQ: Gaugino condensation is an IR phenomenon, what is the point of this microscopic (10d) treatment?
- What this 10d treatment teaches us is how the brane gauginos interact with the bulk fields regardless of whether the gauginos condense or not.
- 4d EFT arguments alone do not tell us anything about small couplings, e.g.,

$$
\begin{aligned}
& \text { Cosmos } \\
& \text { 1st approx. } \\
& \text { - works } \\
& \text { (surprisingly) } \\
& \text { well }
\end{aligned}
$$

Motivation

- An accurate description of brane-bulk interactions is particularly crucial in string theory because of the Dine-Seiberg problem:

- Weak coupling vacua necessitate small numbers in the EFT, e.g., in KKLT:

$$
\begin{aligned}
& V(T) \sim\left(-\frac{2}{T^{2}} W_{0} e^{-T}+\frac{1}{T} e^{-2 T}\right)+\frac{\Omega^{4} \mu_{3}}{T^{2}} \\
& \Omega=\text { warp factor: } \Omega^{4} \sim W_{0} \sim e^{-\tilde{T}_{0}} \ll 1 \\
& \text { A microscopic treatment is necessary } \\
& \text { for substantiating these constructions } \\
& \text { as well as quantifying corrections. }
\end{aligned}
$$

Motivation

- It has been argued that an $\mathcal{O}(1)$ fraction of the compactification is singular [Gao-Hebecker-Junghans, '20]. Resolution of such singularity would necessarily modify the compactification geometry [Carta-Moritz, '21].

[See Hebecker's talk on the "singular bulk" problem]
- A regularized, local brane action is needed to capture the interactions among the brane and bulk fields which are smeared in the 4d EFT.
- Our results are general for flux compactifcation with branes, but for the sake of presentation, KKLT will be used as a proxy.

Brane Gauginos in 10d

10d no-go theorems

- Consider Einstein equation in 10d and its trace over 4d indices:

$$
\mathscr{R}_{M N}=T_{M N}-\frac{1}{8} g_{M N} T_{L}^{L} \Longrightarrow \mathscr{R}_{\mu}^{\mu}=\frac{1}{2}\left(T_{\mu}^{\mu}-T_{m}^{m}\right) \equiv-\Delta
$$

- For a warped ansatz: $\quad d s_{10}^{2}=\Omega^{2}(y)\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+g_{m n} d y^{m} d y^{n}\right)$

$$
\mathscr{V}_{6} \mathscr{R}(\eta)=\int d^{6} y \sqrt{g} \Omega^{8}(y) \mathscr{R}(\eta)=-\int d^{6} y \sqrt{g} \Omega^{10}(y) \Delta
$$

Useful for no-go theorems: most sources have $\Delta>0$!

10d no-go theorems

- KKLT: uplift from gaugino condensate and anti D3-branes

$$
\mathscr{V}_{6} \mathscr{R}(\eta) \approx-\int d^{6} y \sqrt{g} \Omega^{10}(y)\left(\Delta^{\langle\lambda \lambda\rangle}+\Delta^{\overline{D 3}}\right)
$$

$\Delta^{\overline{D 3}}$: easily computed from the $\overline{\mathrm{D} 3}$-brane world-volume action
$\Delta^{\langle\lambda \lambda\rangle}$: inferred from the D7-brane action with $\lambda \lambda \rightarrow\langle\lambda \lambda\rangle \sim e^{-T}$
Claim: both $\Delta^{\langle\lambda \lambda\rangle}$ and $\Delta^{\overline{D 3}}$ are strictly positive!? "Flattening"??
[Moritz, Retolaza, Westphal '17, '18]; [Moritz, Van Riet, '18]; [Gautason, Van Hemelryck, Van Riet '18]
Problem: calculations of $\Delta^{\langle\lambda \lambda\rangle}$ were UV divergent and regularization dependent!!

Brane Gaugino Action

- A goal of our work [Hamada, Hebecker, GS, Soler, '18, '19, '21] is to properly regularize the brane action such that physically meaningful finite quantities e.g. $\Delta^{\langle\lambda \lambda\rangle} \sim\left(T_{m}^{m}-T_{\mu}^{\mu}\right)$ from the D7-action can be computed and compared with 4d SUGRA expectation:

$$
\mathscr{L}_{4 d}=e^{K}\left(\left|D_{T} W_{0}+e^{-K / 2} \lambda \lambda\right|^{2}-3\left|W_{0}\right|^{2}\right)
$$

[See e.g. Wess \& Bagger]

The action was known up to order $\lambda \lambda$ in gauginos

$$
S_{\lambda \lambda} \sim-\int\left|G_{3}\right|^{2}-\overline{\lambda \lambda} \delta_{D 7}\left(G_{3} \cdot \Omega_{3}\right)+\text { c.c. }+\ldots
$$

Problem: this action diverges if used to order $|\lambda \lambda|^{2}$
(Schematically)

$$
G_{3} \sim \lambda \lambda \delta_{D 7}+\ldots \quad \Longrightarrow \quad S_{\lambda \lambda} \sim \int|\lambda \lambda|^{2} \delta_{D 7}^{2} \rightarrow \infty
$$

Brane Gaugino Action

- Unlike the codimension 1 case (c.f. Horava-Witten), the "perfect square structure" leaves us with a non-local tail [Hamada, Hebecker, GS, Soler, '18]:

$$
\begin{aligned}
& d * G=2 d * j=2 e^{-\phi / 2} \sum_{i} \lambda_{i}^{2} d\left(* \bar{\Omega} \delta_{i}^{(0)}\right), \quad d G=0 . \\
& |G-2 j|^{2} \sim\left|2 P_{c}(j)\right|^{2} \longrightarrow 1 / z^{2} \quad \text { approaching the brane locus }
\end{aligned}
$$

- Similar non-locality appears in [Kachru, Kim, McAllister, Zimet, '19] where the branelocalized quartic gaugino term depends on the brane transverse volume.
- These actions are at best approximations where effects that should be localized to D7-branes have been smeared over the internal space.
- For reasons discussed above, we need a microscopic description to accurately capture the interactions among localized sources and bulk fields.

Brane Gaugino Action

- Regularizing the D7 action while respecting locality turns out to be very challenging and has been completed only recently

$$
\begin{aligned}
\mathscr{L}_{\lambda \lambda} & =-\frac{1}{2}\left|G_{3}\right|^{2}+\sum_{i \in D 7} \bar{\lambda} \bar{\lambda}_{i} \delta_{i}\left(G_{3} \cdot \Omega_{3}\right)+\text { c.c. }-\frac{i}{2} G_{3} \wedge \bar{G}_{3} \\
& =-\left|G_{+}-\sum_{i \in D 7} \lambda \lambda_{i} \delta_{i} \bar{\Omega}_{3}\right|^{2}-\left|G_{-}^{(0)}\right|^{2}+\left|G_{+}^{(0)}\right|^{2}+\sum_{i j} \delta_{i} \delta_{j} \lambda \lambda_{i} \overline{\lambda \lambda}_{j}|\Omega|^{2}
\end{aligned}
$$

- Only the last term diverges (for $\mathrm{i}=\mathrm{j}$), but it also contains crucial finite contributions from (self) intersections of D7-stacks

$$
\int \delta_{i} \delta_{j}|\Omega|^{2} \rightarrow \int \delta_{i} \delta_{j} J \wedge J \wedge J=3!\int \delta_{i}^{(2)} \wedge \delta_{j}^{(2)} \wedge J=3!\mathscr{K}_{i j}
$$

- CY intersection numbers: $\mathscr{K}_{i j}=\int \omega_{i} \wedge \omega_{j} \wedge J, \quad\left[\omega_{i}\right] \in H_{+}^{(1,1)}$

A finite local brane gaugino action

- With this insight, we can write a local finite action:

$$
S=-\int_{10 d}\left|G_{+}-\sum_{i} \lambda \lambda_{i} \delta_{i} \bar{\Omega}_{3}\right|^{2}-\int_{10 d}\left(\left|G_{-}^{(0)}\right|^{2}-\left|G_{+}^{(0)}\right|^{2}\right)+3!\sum_{i, j} \lambda \lambda_{i} \overline{\lambda \lambda}_{j} \mathcal{K}_{i j}
$$

A finite local brane gaugino action

- With this insight, we can write a local finite action:

$$
S=-\int_{10 d}\left|G_{+}-\sum_{i} \lambda \lambda_{i} \delta_{i} \bar{\Omega}_{3}\right|^{2}-\int_{10 d}\left(\left|G_{-}^{(0)}\right|^{2}-\left|G_{+}^{(0)}\right|^{2}\right)+3!\sum_{i, j} \lambda \lambda_{i} \overline{\lambda \lambda}_{j} \mathcal{K}_{i j}
$$

With this regularized action, we have done further to:

1. Write S in a 10d covariant way: $\left\{\lambda, \Omega_{3}, J\right\} \rightarrow \Psi_{8}$
2. Check that S reduces to $S_{4 d, \text { sugra }}$ upon CY compactification
3. Compute $\Delta^{\langle\lambda \lambda\rangle}$ and check that: $\mathscr{R}_{\eta} \sim \int \Delta=\mathscr{R}_{\text {KKLT }}$

10d Covariant Action

Covariant action

$$
S_{10 d}=-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{+}-e^{-\phi \mid 2} \sum_{i} \lambda \lambda_{i} \delta_{D 7_{i}} \bar{\Omega}_{3}\right|^{2}-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{-}^{(0)}\right|^{2}+\int_{10 d} e^{\phi}\left|G_{+}^{(0)}\right|^{2}+3 \sum_{i j}(\lambda \lambda)_{i}(\overline{\lambda \lambda})_{j} \mathscr{K}_{i j}
$$

- This is not 10d covariant: λ_{i} are 4 d gauginos; J, Ω_{3} and $\mathscr{K}_{i j}$ are defined with respect to the internal CY. We should use

$$
\Psi_{i}=\lambda_{i} \otimes \chi_{i}
$$

χ_{i} is a covariantly const. spinor on the holomorphic D7i-cycle

$$
\begin{aligned}
\Omega_{m n z} & =\chi_{i}^{T} \Gamma_{m n} \chi_{i} \\
J_{m n} & =\chi_{i}^{\dagger} \Gamma_{m n} \chi_{i} \\
\mathscr{K}_{i i} & \sim \int_{D 7_{i}}\left(x_{i}^{\dagger}\left[\nabla_{m}, \nabla_{n}\right] x_{i}\right)\left(x_{i}^{\dagger} \Gamma^{m n} \chi_{i}\right)
\end{aligned}
$$

Covariant action

$$
S_{10 d}=-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{+}-e^{-\phi \mid 2} \sum_{i} \lambda \lambda_{i} \delta_{D 7_{i}} \bar{\Omega}_{3}\right|^{2}-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{-}^{(0)}\right|^{2}+\int_{10 d} e^{\phi}\left|G_{+}^{(0)}\right|^{2}+3 \sum_{i j}(\lambda \lambda)_{i}(\overline{\lambda \lambda})_{j} \mathscr{K}_{i j}
$$

- To see how $\mathscr{K}_{i j}$ can be expressed in terms of the internal spinor:

$$
\mathcal{K}_{\Sigma \Sigma} \equiv \int_{X}[\Sigma] \wedge[\Sigma] \wedge J=\int_{\Sigma} c_{1}(\mathcal{O}(\Sigma)) \wedge J=\int_{\Sigma} F(N) \wedge J .
$$

- The covariantly constant internal spinor χ satisfies:

$$
\bar{\chi}^{c}\left[D_{m}, D_{n}\right] \chi=0 \quad \Rightarrow \quad \bar{\chi}^{c} R_{m n} \chi+\bar{\chi}^{c} F_{m n} \chi=0
$$

- Putting things together: $\mathcal{K}_{\Sigma \Sigma}=-\frac{i}{4} \int_{\Sigma} d^{4} y \sqrt{g}\left(\bar{\chi}^{c}\left[\nabla_{m}, \nabla_{n}\right] \chi\right)\left(\bar{\chi}^{c} \gamma_{k l} \chi\right) \epsilon^{m n k l}$

Covariant action

$$
S_{10 d}=-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{+}-e^{-\phi \mid 2} \sum_{i} \lambda \lambda_{i} \delta_{D 7_{i}} \bar{\Omega}_{3}\right|^{2}-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{-}^{(0)}\right|^{2}+\int_{10 d} e^{\phi}\left|G_{+}^{(0)}\right|^{2}+3 \sum_{i j}(\lambda \lambda)_{i}(\overline{\lambda \lambda})_{j} \mathscr{K}_{i j}
$$

- After some very messy (Fierz) manipulations:

$$
\begin{aligned}
S_{10 d}= & \mathscr{L}_{\lambda^{2}}-\mathscr{L}_{d i v}+\mathscr{L}_{\lambda^{4}} \\
= & -\frac{1}{4} e^{\phi} \int G \wedge * \bar{G}-\frac{i}{4} e^{\phi} \int G \wedge \bar{G}-\frac{1}{2} e^{\phi / 2} \sum_{i}\left(\int_{D 7_{i}} \bar{G}_{M N z_{i}} \bar{\Psi}_{i} \Gamma^{M N} \Psi_{i}+\text { c.c. }\right) \\
& +\frac{1}{2} \sum_{i} \int_{D 7_{i}} \delta_{i}^{(0)}\left(\bar{\Psi}_{i}^{c} \Gamma_{M N} \Psi_{i}^{c}\right)\left(\bar{\Psi}_{i} \Gamma^{M N} \Psi_{i}\right) \\
& +\frac{3 i}{16} \sum_{i} \int_{D 7_{i}} d^{4} y \sqrt{g}\left(\bar{\Psi}_{i}^{c}\left[\nabla_{M}, \nabla_{N}\right] \Gamma^{K L} \Gamma^{M N} \Psi_{i}^{c}\right)\left(\bar{\Psi}_{i} \Gamma_{K L} \Psi_{i}\right),
\end{aligned}
$$

$S_{10 d} \rightarrow S_{4 d, s u g r a}$ upon CY compactification

$$
S_{10 d} \longrightarrow S_{4 d, \text { sugra }}
$$

$$
S_{10 d}=-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{+}-e^{-\phi / 2} \sum_{i} \lambda \lambda_{i} \delta_{D 7_{i}} \bar{\Omega}_{3}\right|^{2}-\frac{1}{2} \int_{10 d} e^{\phi}\left|G_{-}^{(0)}\right|^{2}+\int_{10 d} e^{\phi}\left|G_{+}^{(0)}\right|^{2}+3 \sum_{i j}(\lambda \lambda)_{i}(\overline{\lambda \lambda})_{j} \mathscr{K}_{i j}
$$

- Solving for G , this action can be casted in 4d $\mathrm{N}=1$ SUGRA with:

$$
K=-2 \log \left[\mathscr{K}\left(T_{\alpha}, \bar{T}_{\beta}\right)\right]-\log [-i(\tau-\bar{\tau})], \quad W=\int G \wedge \Omega, \quad f_{i}(T)=T_{i} \sim \mathscr{K}_{i}
$$

where $\mathscr{K}, \mathscr{K}_{\alpha}, \mathscr{K}_{\alpha \beta}, \mathscr{K}_{\alpha \beta \gamma}$ are 6-, 4-, 2-, 0-volumes (intersection numbers) of the CY

$$
S_{10 d} \rightarrow-e^{-K}\left(\left|\frac{e^{-K / 2}}{4}\left(\partial_{T_{a}} f_{i}\right) \lambda \lambda_{i}+D_{T_{a}} W\right|^{2}+\left|D_{\tau} W\right|^{2}-3|W|^{2}\right)=S_{4 d, s u g r a}
$$

Compute $\Delta^{\langle\lambda \lambda\rangle}\left(\right.$ and $\Delta^{\overline{D 3}}$) from 10d

$$
\mathscr{V}_{6} \mathscr{R}(\eta)=-\int d^{6} y \sqrt{g} \Omega^{10}(y) \Delta
$$

- Given our finite action, one can revisit the 10d analysis of KKLT

$$
\Delta=\frac{1}{2}\left(-T_{\mu}^{\mu}+T_{m}^{m}\right)=(\mathscr{L}-\underbrace{g^{m n} \frac{\partial \mathscr{L}}{\partial g^{m n}}}) \longrightarrow \begin{gathered}
=\text { scaling } \mathrm{w} / \\
\text { volume } \mathrm{T}
\end{gathered}
$$

10d KKLT step 0: $\Delta=\Delta^{G K P}=0$

$$
\mathscr{R}_{\eta}=0
$$

(No-scale) Minkowski vacua

$$
\mathscr{V}_{6} \mathscr{R}(\eta)=-\int d^{6} y \sqrt{g} \Omega^{10}(y) \Delta
$$

- Given our finite action, one can revisit the 10d analysis of KKLT

$$
\Delta=\frac{1}{2}\left(-T_{\mu}^{\mu}+T_{m}^{m}\right)=(\mathscr{L}-\underbrace{g^{m n} \frac{\partial \mathscr{L}}{\partial g^{m n}}}) \longrightarrow \quad \begin{gathered}
\text { scaling } \mathrm{w} / \\
\text { volume } \mathrm{T}
\end{gathered}
$$

10d KKLT step 1: $\Delta=\Delta^{\langle\lambda \lambda\rangle}$ computed from $S_{\langle\lambda \lambda\rangle \rightarrow e^{-T}}$

$$
\mathscr{R}_{\eta} \sim-\left(e^{-2 T}-\frac{1}{T} W_{0} e^{-T}\right)+\frac{1}{2 T} e^{-2 T}
$$

Same as KKLT AdS result on-shell

$$
\mathscr{R}_{\eta} \sim \frac{1}{2} T \frac{\partial V_{\langle\lambda \lambda\rangle}}{\partial T}+\left.V_{\langle\lambda \lambda\rangle} \quad \underset{T \rightarrow T_{0}}{ } \quad V_{\langle\lambda \lambda\rangle}\right|_{T_{0}}
$$

$$
\mathscr{V}_{6} \mathscr{R}(\eta)=-\int d^{6} y \sqrt{g} \Omega^{10}(y) \Delta
$$

- Given our finite action, one can revisit the 10d analysis of KKLT

$$
\Delta=\frac{1}{2}\left(-T_{\mu}^{\mu}+T_{m}^{m}\right)=(\mathscr{L}-\underbrace{g^{m n} \frac{\partial \mathscr{L}}{\partial g^{m n}}}) \longrightarrow \begin{gathered}
=\text { scaling } \mathrm{w} / \\
\text { volume } \mathrm{T}
\end{gathered}
$$

10d KKLT step 1: $\Delta=\Delta^{\langle\lambda \lambda\rangle}$ computed from $S_{\langle\lambda \lambda\rangle \rightarrow e^{-T}}$

$$
\mathscr{R}_{\eta} \sim-\left(e^{-2 T}-\frac{1}{T} W_{0} e^{-T}\right)+\frac{1}{2 T} e^{-2 T}
$$

Subleading in $1 / T$ terms come from renormalization of gauge couplings
[Kaplunovsky, Louis, '91]
Same as KKLT AdS result on-shell

$$
\mathscr{R}_{\eta} \sim \frac{1}{2} T \frac{\partial V_{\langle\lambda \lambda\rangle}}{\partial T}+\left.V_{\langle\lambda \lambda\rangle} \quad \underset{T \rightarrow T_{0}}{ } \quad V_{\langle\lambda \lambda\rangle}\right|_{T_{0}}
$$

$$
\mathscr{V}_{6} \mathscr{R}(\eta)=-\int d^{6} y \sqrt{g} \Omega^{10}(y) \Delta
$$

- Given our finite action, one can revisit the 10d analysis of KKLT

$$
\Delta=\frac{1}{2}\left(-T_{\mu}^{\mu}+T_{m}^{m}\right)=(\mathscr{L}-\underbrace{g^{m n} \frac{\partial \mathscr{L}}{\partial g^{m n}}}) \longrightarrow \begin{gathered}
\text { scaling } \mathrm{w} / \\
\text { volume } \mathrm{T}
\end{gathered}
$$

10d KKLT step 2: $\Delta=\Delta^{\langle\lambda \lambda\rangle}+\Delta^{\overline{D 3}}$
Contribution from $\Delta^{\overline{D 3}}$ is negligible: $\Omega^{8}\left(y_{\overline{D 3}}\right) \Delta^{\overline{D 3}} \approx 0$

Same off-shell formula as in step 1, different on-shell result

$$
\mathscr{R}_{\eta} \sim \frac{1}{2} T \frac{\partial V_{\langle\lambda \lambda\rangle}}{\partial T}+V_{\langle\lambda \lambda\rangle} \underset{\left[V=V_{V_{\lambda}+}+V_{\overline{D 3}]}\right.}{ }-\frac{1}{2} T \frac{\partial V_{\overline{D 3}}}{\partial T}+V_{\langle\lambda \lambda\rangle} \underset{V_{\bar{B} \bar{T} T-2}}{\longrightarrow} V_{\overline{D 3}}+\left.V_{\langle\lambda \lambda\rangle}\right|_{\tilde{I}_{0}}
$$

Summary

Summary

- We have discussed several motivations that necessitate a microscopic description of brane-localized non-perturbative effects.
- We have completed the D7-brane action for gauginos and their coupling to 3 -form flux up to the quartic order.
- The properly regularized action is free of divergences \& local: a necessary first step for quantitative studies of flux compactification with branes.
- This microscopic action 1) reduces upon Calabi-Yau compactification to:

$$
\mathscr{L}_{4 d}=e^{K}\left(\left|D_{T} W_{0}+e^{-K / 2} \lambda \lambda\right|^{2}-3\left|W_{0}\right|^{2}\right)
$$

and 2) the 10 d computation of \mathscr{R}_{4} matches with 4 d results of KKLT.

- It would be interesting to confirm our results with a 10d Noether procedure [Horava, Witten, '96] or by completing the κ-symmetric D7-brane action [Grana, Kovensky, Retolaza, '20];;Retolaza, Rogers, Tatar, Tonioni, '21] to quartic order.

