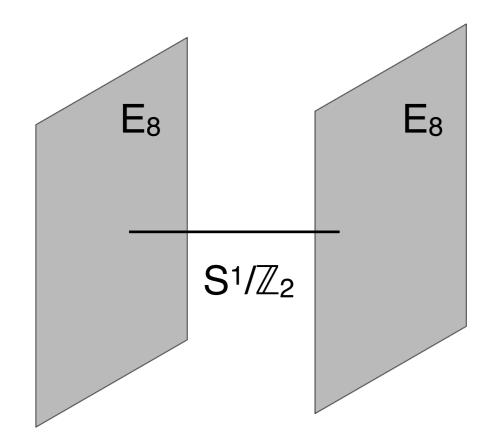
Microscopic Description of Brane Gauginos

Gary Shiu University of Wisconsin-Madison

Based on joint work with Yuta Hamada, Arthur Hebecker, and Pablo Soler:

- "On brane gaugino condensates in 10d," JHEP 1904, 008 (2019) [arXiv:1812.06097 [hep-th]].
- "Understanding KKLT from a 10d perspective," JHEP 1906, 019 (2019) [arXiv:1902.01410 [hep-th]].
- "Completing the D7-brane local gaugino action," [arXiv:2105.11467 [hep-th]].

- Non-perturbative effects play a decisive role in string phenomenology.
 Since the 80s, they have been used to stabilize moduli.
- This role continues in recent times, e.g. gaugino condensation on branes is a key element in many proposed dS constructions e.g., KKLT/LVS.
- Non-perturbative effects localized on branes introduce subtleties:



$$S_G \sim -\int_{M^{11}} d^{11}x \sqrt{-g} \left(G_{IJKL} G^{IJKL} - \delta(x^{11}) G_{ABC11} j^{ABC} \right)$$

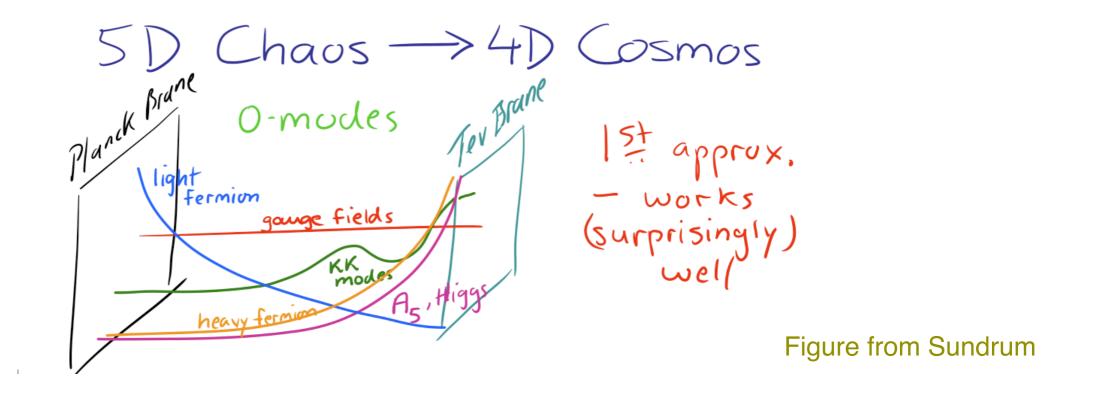
$$G_{ABC11} \sim \delta(x^{11}) j_{ABC} \implies S_G \sim \delta(0)$$

Supersymmetry suggests how to regularize the action

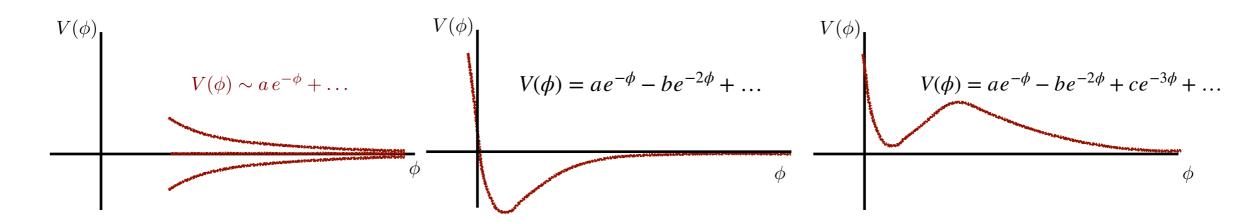
$$S \sim -\int_{M^{11}} d^{11}x \sqrt{-g} \left(G_{ABC11} - \frac{1}{2} \delta(x^{11}) j_{ABC} \right)^2$$
 [Horava, Witten, '96]

Only if this UV divergence is properly regularized can we extract physically meaningful results.

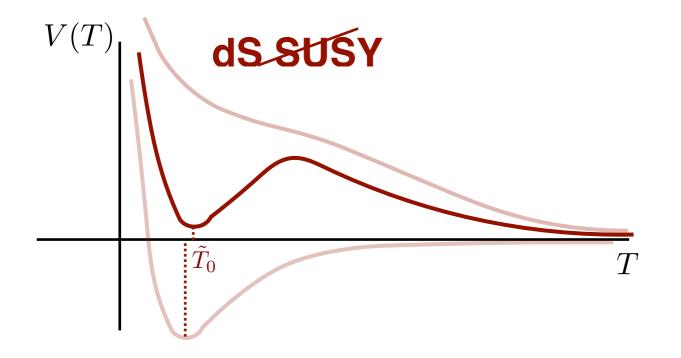
- Our work is a continuation of this quest. Codimension ≥ 2 branes introduce new subtleties, but a properly regularized, local action is finally obtained.
- FAQ: Gaugino condensation is an IR phenomenon, what is the point of this microscopic (10d) treatment?
- What this 10d treatment teaches us is how the brane gauginos interact with the bulk fields regardless of whether the gauginos condense or not.
- 4d EFT arguments alone do not tell us anything about small couplings, e.g.,



 An accurate description of brane-bulk interactions is particularly crucial in string theory because of the Dine-Seiberg problem:



Weak coupling vacua necessitate small numbers in the EFT, e.g., in KKLT:

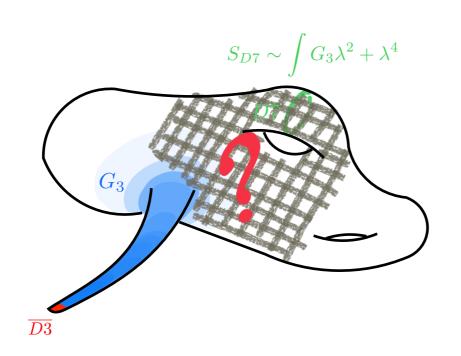


$$V(T) \sim \left(-\frac{2}{T^2} W_0 e^{-T} + \frac{1}{T} e^{-2T} \right) + \frac{\Omega^4 \mu_3}{T^2}$$

$$\Omega$$
 = warp factor: $\Omega^4 \sim W_0 \sim e^{-\tilde{T}_0} \ll 1$

A microscopic treatment is necessary for substantiating these constructions as well as quantifying corrections.

It has been argued that an $\mathcal{O}(1)$ fraction of the compactification is singular [Gao-Hebecker-Junghans, '20]. Resolution of such singularity would necessarily modify the compactification geometry [Carta-Moritz, '21].



[See Hebecker's talk on the "singular bulk" problem]

- A regularized, local brane action is needed to capture the interactions among the brane and bulk fields which are smeared in the 4d EFT.
- Our results are general for flux compactification with branes, but for the sake of presentation, KKLT will be used as a proxy.

Brane Gauginos in 10d

10d no-go theorems

Consider Einstein equation in 10d and its trace over 4d indices:

$$\mathcal{R}_{MN} \,=\, T_{MN} \,-\, \frac{1}{8}\,g_{MN}\,T^L_{\ L} \implies \mathcal{R}^\mu_{\ \mu} = \frac{1}{2}\left(T^\mu_{\ \mu} - T^m_{\ m}\right) \equiv -\, \Delta$$

• For a warped ansatz: $ds_{10}^2 = \Omega^2(y) \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + g_{mn} dy^m dy^n \right)$

$$\mathcal{V}_6 \mathcal{R}(\eta) = \int d^6 y \sqrt{g} \ \Omega^8(y) \mathcal{R}(\eta) = -\int d^6 y \sqrt{g} \ \Omega^{10}(y) \Delta$$

Useful for no-go theorems: most sources have $\Delta > 0$!

10d no-go theorems

KKLT: uplift from gaugino condensate and anti D3-branes

$$\mathcal{V}_6 \mathcal{R}(\eta) \approx -\int d^6 y \sqrt{g} \ \Omega^{10}(y) \left(\Delta^{\langle \lambda \lambda \rangle} + \Delta^{\overline{D3}} \right)$$

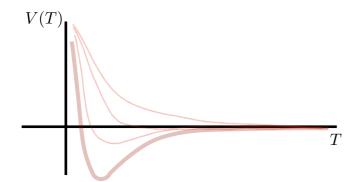
 $\Delta^{\overline{D3}}$: easily computed from the $\overline{D3}$ -brane world-volume action

 $\Delta^{\langle\lambda\lambda\rangle}$: inferred from the D7-brane action with $\lambda\lambda\to\langle\lambda\lambda\rangle\sim e^{-T}$

Claim: both $\Delta^{\langle\lambda\lambda\rangle}$ and $\Delta^{\overline{D3}}$ are strictly positive!? "Flattening"??

[Moritz, Retolaza, Westphal '17, '18]; [Moritz, Van Riet, '18]; [Gautason, Van Hemelryck, Van Riet '18]

Problem: calculations of $\Delta^{\langle\lambda\lambda\rangle}$ were UV divergent and regularization dependent!!



[Hamada, Hebecker, GS, Soler, '18]

Brane Gaugino Action

• A goal of our work [Hamada, Hebecker, GS, Soler, '18, '19, '21] is to properly regularize the brane action such that physically meaningful finite quantities e.g. $\Delta^{\langle\lambda\lambda\rangle}\sim (T_m^m-T_\mu^\mu)$ from the D7-action can be computed and compared with 4d SUGRA expectation:

$$\mathcal{L}_{4d} = e^{K} \left(|D_{T}W_{0} + e^{-K/2} \lambda \lambda |^{2} - 3 |W_{0}|^{2} \right)$$
 [See e.g. Wess & Bagger]

The action was known up to order $\lambda\lambda$ in gauginos

Camara, Ibanez, Uranga '04 Dymarsky, Martucci, '10 Grana, Kovensky, Retolaza '20

$$S_{\lambda\lambda} \sim -\int |G_3|^2 - \overline{\lambda\lambda} \, \delta_{D7} \, (G_3 \cdot \Omega_3) + \text{c.c.} + \dots$$

Problem: this action diverges if used to order $|\lambda\lambda|^2$

(Schematically)
$$G_3 \sim \lambda \lambda \, \delta_{D7} + \dots \implies S_{\lambda \lambda} \sim \int |\lambda \lambda|^2 \delta_{D7}^2 \to \infty$$

For clarity: $g_s = \Omega(y) = 1$

Brane Gaugino Action

Unlike the codimension 1 case (c.f. Horava-Witten), the "perfect square structure" leaves us with a non-local tail [Hamada, Hebecker, GS, Soler, '18]:

$$d * G = 2 d * j = 2 e^{-\phi/2} \sum_{i} \lambda_{i}^{2} d \left(* \overline{\Omega} \, \delta_{i}^{(0)} \right), \qquad dG = 0.$$

$$|G-2j|^2 \sim |2P_c(j)|^2 \longrightarrow 1/z^2$$
 approaching the brane locus

- Similar non-locality appears in [Kachru, Kim, McAllister, Zimet, '19] where the brane-localized quartic gaugino term depends on the brane transverse volume.
- These actions are at best approximations where effects that should be localized to D7-branes have been smeared over the internal space.
- For reasons discussed above, we need a microscopic description to accurately capture the interactions among localized sources and bulk fields.

Brane Gaugino Action

 Regularizing the D7 action while respecting locality turns out to be very challenging and has been completed only recently

$$\mathcal{L}_{\lambda\lambda} = -\frac{1}{2} |G_3|^2 + \sum_{i \in D7} \overline{\lambda} \overline{\lambda}_i \, \delta_i \, (G_3 \cdot \Omega_3) + \text{c.c.} - \frac{i}{2} G_3 \wedge \overline{G}_3$$

$$= -\left| G_+ - \sum_{i \in D7} \lambda \lambda_i \, \delta_i \, \overline{\Omega}_3 \right|^2 - |G_-^{(0)}|^2 + |G_+^{(0)}|^2 + \sum_{ij} \delta_i \delta_j \, \lambda \lambda_i \overline{\lambda}_j |\Omega|^2$$

 Only the last term diverges (for i=j), but it also contains crucial finite contributions from (self) intersections of D7-stacks

$$\int \delta_i \, \delta_j \, |\Omega|^2 \to \int \delta_i \delta_j \, J \wedge J \wedge J = 3! \int \delta_i^{(2)} \wedge \delta_j^{(2)} \wedge J = 3! \mathcal{K}_{ij}$$

• CY intersection numbers: $\mathcal{K}_{ij} = \int \omega_i \wedge \omega_j \wedge J$, $[\omega_i] \in H^{(1,1)}_+$

A finite local brane gaugino action

With this insight, we can write a local finite action:

$$S = -\int_{10d} \left| G_{+} - \sum_{i} \lambda \lambda_{i} \delta_{i} \overline{\Omega}_{3} \right|^{2} - \int_{10d} \left(|G_{-}^{(0)}|^{2} - |G_{+}^{(0)}|^{2} \right) + 3! \sum_{i,j} \lambda \lambda_{i} \overline{\lambda \lambda_{j}} \, \mathcal{K}_{ij}$$

A finite local brane gaugino action

With this insight, we can write a local finite action:

$$S = -\int_{10d} \left| G_{+} - \sum_{i} \lambda \lambda_{i} \delta_{i} \overline{\Omega}_{3} \right|^{2} - \int_{10d} \left(|G_{-}^{(0)}|^{2} - |G_{+}^{(0)}|^{2} \right) + 3! \sum_{i,j} \lambda \lambda_{i} \overline{\lambda \lambda}_{j} \mathcal{K}_{ij}$$

With this regularized action, we have done further to:

- 1. Write *S* in a 10d covariant way: $\{\lambda, \Omega_3, J\} \rightarrow \Psi_8$
- 2. Check that S reduces to $S_{4d, sugra}$ upon CY compactification
- 3. Compute $\Delta^{\langle\lambda\lambda\rangle}$ and check that: $\mathscr{R}_{\eta}\sim\int\Delta=\mathscr{R}_{KKLT}$

10d Covariant Action

Covariant action

$$S_{10d} = -\frac{1}{2} \int_{10d} e^{\phi} \left| G_{+} - e^{-\phi/2} \sum_{i} \lambda \lambda_{i} \, \delta_{D7_{i}} \overline{\Omega}_{3} \right|^{2} - \frac{1}{2} \int_{10d} e^{\phi} \left| G_{-}^{(0)} \right|^{2} + \int_{10d} e^{\phi} \left| G_{+}^{(0)} \right|^{2} + 3 \sum_{ij} (\lambda \lambda)_{i} (\overline{\lambda \lambda})_{j} \, \mathcal{K}_{ij}$$

• This is not 10d covariant: λ_i are 4d gauginos; J, Ω_3 and \mathcal{K}_{ij} are defined with respect to the internal CY. We should use

$$\Psi_i = \lambda_i \otimes \chi_i$$

 χ_i is a covariantly const. spinor on the holomorphic D7_i-cycle

$$\Omega_{mnz} = \chi_i^T \Gamma_{mn} \chi_i
J_{mn} = \chi_i^{\dagger} \Gamma_{mn} \chi_i
\mathcal{K}_{ii} \sim \int_{D7_i} \left(\chi_i^{\dagger} [\nabla_m, \nabla_n] \chi_i \right) \left(\chi_i^{\dagger} \Gamma^{mn} \chi_i \right)$$

Covariant action

$$S_{10d} = -\frac{1}{2} \int_{10d} e^{\phi} \left| G_{+} - e^{-\phi/2} \sum_{i} \lambda \lambda_{i} \, \delta_{D7_{i}} \overline{\Omega}_{3} \right|^{2} - \frac{1}{2} \int_{10d} e^{\phi} \left| G_{-}^{(0)} \right|^{2} + \int_{10d} e^{\phi} \left| G_{+}^{(0)} \right|^{2} + 3 \sum_{ij} (\lambda \lambda)_{i} (\overline{\lambda \lambda})_{j} \, \mathcal{K}_{ij}$$

• To see how \mathcal{K}_{ij} can be expressed in terms of the internal spinor:

$$\mathcal{K}_{\Sigma\Sigma} \equiv \int_X [\Sigma] \wedge [\Sigma] \wedge J = \int_\Sigma c_1(\mathcal{O}(\Sigma)) \wedge J = \int_\Sigma F(N) \wedge J.$$

• The covariantly constant internal spinor χ satisfies:

$$\overline{\chi}^c[D_m, D_n]\chi = 0 \qquad \Rightarrow \qquad \overline{\chi}^c R_{mn}\chi + \overline{\chi}^c F_{mn}\chi = 0$$

• Putting things together: $\mathcal{K}_{\Sigma\Sigma} = -\frac{i}{4} \int_{\Sigma} d^4y \, \sqrt{g} \, \left(\overline{\chi}^c \left[\nabla_m, \nabla_n \right] \chi \right) \left(\overline{\chi}^c \, \gamma_{kl} \, \chi \right) \epsilon^{mnkl}$

Covariant action

$$S_{10d} = -\frac{1}{2} \int_{10d} e^{\phi} \left| G_{+} - e^{-\phi/2} \sum_{i} \lambda \lambda_{i} \, \delta_{D7_{i}} \overline{\Omega}_{3} \right|^{2} - \frac{1}{2} \int_{10d} e^{\phi} \left| G_{-}^{(0)} \right|^{2} + \int_{10d} e^{\phi} \left| G_{+}^{(0)} \right|^{2} + 3 \sum_{ij} (\lambda \lambda)_{i} (\overline{\lambda \lambda})_{j} \, \mathcal{K}_{ij}$$

After some very messy (Fierz) manipulations:

$$\begin{split} S_{10d} &= \, \mathcal{L}_{\lambda^2} - \mathcal{L}_{div} + \mathcal{L}_{\lambda^4} \\ &= -\frac{1}{4} \, e^\phi \int G \wedge {}^* \overline{G} - \frac{i}{4} \, e^\phi \int G \wedge \overline{G} - \frac{1}{2} e^{\phi/2} \sum_i \left(\int_{D7_i} \overline{G}_{MNz_i} \overline{\Psi}_i \, \Gamma^{MN} \, \Psi_i + \text{c.c.} \right) \\ &+ \frac{1}{2} \sum_i \int_{D7_i} \delta_i^{(0)} \, \left(\overline{\Psi}_i^c \, \Gamma_{MN} \, \Psi_i^c \right) \left(\overline{\Psi}_i \, \Gamma^{MN} \Psi_i \right) \\ &+ \frac{3 \, i}{16} \, \sum_i \int_{D7_i} d^4 y \, \sqrt{g} \, \left(\overline{\Psi}_i^c \, [\, \nabla_M, \nabla_N] \, \Gamma^{KL} \Gamma^{MN} \Psi_i^c \right) \left(\overline{\Psi}_i \, \Gamma_{KL} \Psi_i \right) \,, \end{split}$$

 $S_{10d}
ightarrow S_{4d,sugra}$ upon CY compactification

$$S_{10d} \longrightarrow S_{4d,sugra}$$

$$S_{10d} = -\frac{1}{2} \int_{10d} e^{\phi} \left| G_{+} - e^{-\phi/2} \sum_{i} \lambda \lambda_{i} \, \delta_{D7_{i}} \overline{\Omega}_{3} \right|^{2} - \frac{1}{2} \int_{10d} e^{\phi} \left| G_{-}^{(0)} \right|^{2} + \int_{10d} e^{\phi} \left| G_{+}^{(0)} \right|^{2} + 3 \sum_{ij} (\lambda \lambda)_{i} (\overline{\lambda \lambda})_{j} \, \mathcal{K}_{ij}$$

Solving for G, this action can be casted in 4d N=1 SUGRA with:

$$K = -2\log\left[\mathcal{K}(T_{\alpha}, \bar{T}_{\beta})\right] - \log\left[-i(\tau - \bar{\tau})\right] , \qquad W = \int G \wedge \Omega , \qquad f_i(T) = T_i \sim \mathcal{K}_i$$

where \mathcal{K} , \mathcal{K}_{α} , $\mathcal{K}_{\alpha\beta}$, $\mathcal{K}_{\alpha\beta\gamma}$ are 6-, 4-, 2-, 0-volumes (intersection numbers) of the CY

$$S_{10d} \to -e^{-K} \left(\left| \frac{e^{-K/2}}{4} \left(\partial_{T_{\alpha}} f_{i} \right) \lambda \lambda_{i} + D_{T_{\alpha}} W \right|^{2} + |D_{\tau} W|^{2} - 3|W|^{2} \right) = S_{4d,sugra}$$

Compute $\Delta^{\langle\lambda\lambda\rangle}$ (and $\Delta^{\overline{D3}}$) from 10d

$$\mathcal{V}_6 \mathcal{R}(\eta) = -\int d^6 y \sqrt{g} \ \Omega^{10}(y) \, \Delta$$

$$\Delta = \frac{1}{2} \left(-T_{\mu}^{\mu} + T_{m}^{m} \right) = \left(\mathcal{L} - g^{mn} \frac{\partial \mathcal{L}}{\partial g^{mn}} \right) = \text{scaling w/volume T}$$

10d KKLT step 0:
$$\Delta = \Delta^{GKP} = 0$$

$$\mathcal{R}_{\eta} = 0$$

(No-scale) Minkowski vacua

$$\mathcal{V}_6 \mathcal{R}(\eta) = -\int d^6 y \sqrt{g} \ \Omega^{10}(y) \, \Delta$$

$$\Delta = \frac{1}{2} \left(-T_{\mu}^{\mu} + T_{m}^{m} \right) = \left(\mathcal{L} - g^{mn} \frac{\partial \mathcal{L}}{\partial g^{mn}} \right) = \text{scaling water}$$
volume T

10d KKLT step 1: $\Delta = \Delta^{\langle \lambda \lambda \rangle}$ computed from $S_{\langle \lambda \lambda \rangle \to e^{-T}}$

$$\mathcal{R}_{\eta} \sim -\left(e^{-2T} - \frac{1}{T}W_0e^{-T}\right) + \frac{1}{2T}e^{-2T}$$

Same as KKLT AdS result on-shell

$$\mathcal{R}_{\eta} \sim \frac{1}{2} T \left. \frac{\partial V_{\langle \lambda \lambda \rangle}}{\partial T} + V_{\langle \lambda \lambda \rangle} \right. \left. \begin{array}{c} \longrightarrow \\ T \to T_0 \end{array} \right. \left. V_{\langle \lambda \lambda \rangle} \right|_{T_0}$$

$$\mathcal{V}_6 \mathcal{R}(\eta) = -\int d^6 y \sqrt{g} \ \Omega^{10}(y) \, \Delta$$

$$\Delta = \frac{1}{2} \left(-T_{\mu}^{\mu} + T_{m}^{m} \right) = \left(\mathcal{L} - g^{mn} \frac{\partial \mathcal{L}}{\partial g^{mn}} \right) = \text{scaling water}$$
volume T

10d KKLT step 1: $\Delta = \Delta^{\langle \lambda \lambda \rangle}$ computed from $S_{\langle \lambda \lambda \rangle \to e^{-T}}$

$$\mathcal{R}_{\eta} \sim -\left(e^{-2T} - \frac{1}{T}W_0e^{-T}\right) + \frac{1}{2T}e^{-2T}$$

Subleading in 1/T terms come from renormalization of gauge couplings
[Kaplunovsky, Louis, '91]

Same as KKLT AdS result on-shell

$$\mathcal{R}_{\eta} \sim \frac{1}{2} T \left. \frac{\partial V_{\langle \lambda \lambda \rangle}}{\partial T} + V_{\langle \lambda \lambda \rangle} \right. \left. \begin{array}{c} \longrightarrow \\ T \to T_0 \end{array} \right. \left. V_{\langle \lambda \lambda \rangle} \right|_{T_0}$$

$$\mathcal{V}_6 \mathcal{R}(\eta) = -\int d^6 y \sqrt{g} \ \Omega^{10}(y) \, \Delta$$

$$\Delta = \frac{1}{2} \left(-T_{\mu}^{\mu} + T_{m}^{m} \right) = \left(\mathcal{L} - g^{mn} \frac{\partial \mathcal{L}}{\partial g^{mn}} \right) = \text{scaling weak volume T}$$

10d KKLT step 2:
$$\Delta = \Delta^{\langle \lambda \lambda \rangle} + \Delta^{\overline{D3}}$$

Contribution from $\Delta^{\overline{D3}}$ is negligible: $\Omega^8(y_{\overline{D3}}) \Delta^{\overline{D3}} \approx 0$

Same off-shell formula as in step 1, different on-shell result

$$\mathcal{R}_{\eta} \sim \frac{1}{2} T \frac{\partial V_{\langle \lambda \lambda \rangle}}{\partial T} + V_{\langle \lambda \lambda \rangle} = \left. -\frac{1}{2} T \frac{\partial V_{\overline{D3}}}{\partial T} + V_{\langle \lambda \lambda \rangle} \right|_{\widetilde{T}_{0}} V_{\overline{D3} \sim T^{-2}} V_{\overline{D3}} + V_{\langle \lambda \lambda \rangle} \Big|_{\widetilde{T}_{0}}$$

Summary

Summary

- We have discussed several motivations that necessitate a microscopic description of brane-localized non-perturbative effects.
- We have completed the D7-brane action for gauginos and their coupling to 3-form flux up to the quartic order.
- The properly regularized action is free of divergences & local: a necessary first step for quantitative studies of flux compactification with branes.
- This microscopic action 1) reduces upon Calabi-Yau compactification to:

$$\mathcal{L}_{4d} = e^{K} \left(|D_{T}W_{0} + e^{-K/2} \lambda \lambda|^{2} - 3 |W_{0}|^{2} \right)$$

and 2) the 10d computation of \mathcal{R}_4 matches with 4d results of KKLT.

It would be interesting to confirm our results with a 10d Noether procedure [Horava, Witten, '96] or by completing the κ -symmetric D7-brane action [Grana, Kovensky, Retolaza, '20];[Retolaza, Rogers, Tatar, Tonioni, '21] to quartic order.