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Introduction

Recent work on analyzing F-theory
compactifications on elliptic CY4 with flux,
described at low energies by 4D N = 1 supergravity.

Nontrivial flux background permits chiral excess
transforming in representation R of 4D gauge group
[Beasley-Heckman-Vafa; Donagi-Wijnholt ’08]:

χR ≡ NR − NR∗ 6= 0

where NR (NR∗) is the number of 4D chiral
(antichiral) multiplets.



Some motivations

Chiral spectra of the (SU(3)× SU(2)× U(1))/Z6

model [Taylor-Turner, Raghuram-Taylor-Turner ’19]. Broadest class of
F-theory models with generic [Taylor-Turner ’19] matter and
tuned SM gauge symmetry. Special case: F11 model
[Klevers-Mayorga Pena-Oehlmann-Piragua-Reuter ’15] admitting O(1015) SM
chiral spectra [Cvetič-Grassi-Klevers-Piragua ’14]

Landscape versus swampland, i.e. what set of 4D
N = 1 anomaly free theories can be UV completed
in F-theory?



Overview of results

I discuss features of a new approach to flux
compactifications that combines various techniques
appearing throughout the literature with a less
explored mathematical characterization of the
problem.

I hope to convince you that there is something to be
gained by revisiting what is by all appearances a
thoroughly studied problem.



Overview of results

Combination of computational methods: topological
intersection numbers via pushforward formulas [Aluffi ’10;

Esole-PJ-Kang ’17], matching with one-loop exact
Chern-Simons couplings [Grimm-Hayashi ‘11, Cvetič-Klevers-Grimm ‘13].

We compute vertical fluxes and chiral indices for
numerous F-theory models over arbitrary threefold
bases B , collecting evidence that an F-theory model
(G,R) realizes all anomaly free 4D chiral matter
spectra.



Overview of results

Mathematical characterization: vertical flux
backgrounds belong to a lattice Λ equipped with a
symmetric bilinear pairing

M : Λ× Λ→ Z

We find evidence (and conjecture) that Λ (whose
non-degenerate part is isomorphic to a particular
homology subgroup of smooth elliptic CY4s) is
resolution independent.

Resolution independence of Λ may facilitate more
complete explorations of F-theory flux vacua



Basic setup
Consider F-theory on singular elliptic CY4

X0 → B , y 2 = x3 + fx + g

with gauge group G, charged matter R, and flux
background.
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Resolution of singularities

Compactify on a circle and switch on gauge
holonomies ϕi =

∫
S1 Ai to move onto the Coulomb

branch and resolve the singularities,

X → X0.

Resolution can be viewed as moving to a generic
point of the Kähler moduli space of X .

We then use duality with M-theory compactified on
X . The F-theory flux background maps to a
nontrivial background G4 = dC3. We determine the
chiral spectrum from the geometry of X .



Resolution of singularities






















































blowup

Ci

Resolution of SU(2) model
Cartan divisor Ci ↪→ Di → Σ behaves like simple coroot



M-theory on CY4 + flux
G4 consistency conditions studied extensively
[Becker-Becker; Dasgupta-Mukhi; Dasgupta-Rajesh-Sethi; Sethi-Vafa-Witten; Witten 96; Gukov-Vafa-Witten;

Freed-Witten 99; Haack-Lewis 01; others]. Preserving SUSY requires
minimizing W (Ω) + W̃ (J), which implies

G4 ∈ H2,2(X ,R) ∩ H4(X ,Z/2)

I further assume G4 lives in the subgroup

H2,2
vert(X ,Z) ⊂ · · · ⊕ H2,2

vert(X ,C)⊕ H2,2
hor(X ,C)⊕ H2,2

rem(X ,C)⊕ · · ·

generated by PD(DI ) ∧ PD(DJ) where DI are
divisors of X . Vertical fluxes are then given by

ΘIJ =

∫
[DI∩DJ ]

G4, [DI ∩ DJ ] ∈ Hvert
2,2 (X ,Z).



Lifting to F-theory
To lift to F-theory, take X to be elliptically fibered.
We then have canonical basis of divisors
DI = DA,Dα,Di ⊂ X where Dα are pullbacks from
B [Shioda-Tate, Wazir].

Conditions to preserve local Lorentz and gauge
symmetry: ∫

[DI∩Dα]

G4 = 0.

Chiral indices given by integrals over homology
classes (matter surfaces) SR = x IJR [DI ∩ DJ ] [Donagi-Wijnholt

08; Marsano-Schafer-Nameki; Braun-Collinucci-Valandro; Krause-Mayrhofer-Weigand; Grimm-Hayashi 11]:

χR = NR − NR∗ =

∫
SR

G4.



Computing chiral indices
We can use intersection theory to evaluate
intersection pairing 〈, 〉:∫

[DI∩DJ ]

G4 = 〈PD(G4), [DI∩DJ ]〉 = GKLDK ·DL·DI ·DJ

This can be computed via pushforward, π : X → B
[Aluffi ’10; Esole-PJ-Kang ’17]:

π∗(DK · DL · DI · DJ) = W αβγ
KLIJDα · Dβ · Dγ.

If we know S IJ
R [DI ∩ DJ ] then we are done. Or, we

can compare to low energy 3D physics [Grimm-Hayashi ‘11,

Cvetič-Klevers-Grimm ‘13]:∫
[Di∩Dj ]

G4 = Θ3D
ij = xRij χR, L3D ⊃ Θ3D

ij Ai ∧ Fj



Example: Simple Tate models
y 2z+a1xyz+a3yz

2−(x3 +a2x
2z+a4xz

2 +a6z
3) = 0.

Tune gauge symmetry on 7-branes wrapping σ = 0
in arbitrary B by enforcing as = as,ms

σms .
Kodaira

fiber
gauge
group min. chiral index constraints

Is
5 SU(5) n(σ) · (a1) · (a6,5) χ5 + χ10 = 0

Is
6 SU(6) n(σ) · (a1) · (a2

4,3) χ6 + 2χ15 = 0
Is
6 SU(6)◦ n(σ) · (a1) · (a3

3,2) χ6 = 0
Is
7 SU(7) n(σ) · (a1) · (a6,7) χ7 + 3χ21 = 0

Ins
6 Sp(6) 0 —

I∗s1 SO(10) n(σ) · (a2,1) · (a6,5) any χ16

I∗ns
2 SO(11) n(σ) · (a2,1) · (a6,5) —
I∗s2 SO(12) n(σ) · (a2,1) · (a2

4,3) —
IV∗s E6 n(σ) · (a3,2) · (a6,5) any χ27

III∗ E7 n(σ) · (a4,3) · (a6,5) —
IV∗ns F4 0 —
I∗ns
0 G2 0 —

Constraints agree with 4D anomaly cancellation.



Example: (SU(3)× SU(2)×U(1))/Z6
This model contains the MSSM and three exotic
representations. Realizable as a general cubic in
CP2

[Raghuram-Taylor-Turner ’19]:

b1W (d0V
2 + d1VW + d2W

2)

+ U(s1U
2 + s2UV + s5UW + s6VW + s8W

2) = 0.

4D anomaly cancellation permits

(3, 2) 1
6

(3, 1) 2
3

(3, 1)− 1
3

(1, 2) 1
2

(1, 1)1 (3, 1)− 4
3

(1, 2) 3
2

(1, 1)2

MSSM 1 -1 -1 -1 1 0 0 0
family 2 2 -1 -4 -2 0 1 0 1
family 3 -2 2 2 -1 0 0 1 -1

F-theory realizes all three families over generic B
[PJ-Taylor-Turner (in progress)]



Resolution independent structure?
Is there a clear geometric interpretation independent
of choice of X? A motivating set of examples are
the Tate models:

χR = n × (σ) · (p(as,ms
)) · (p′(as,ms

))

= # of special points in B .

Compare to the numbers of R hypermultiplets in
6D compactifications [Grassi-Morrison ‘12]:

N6D
R = (σ) · p((as,ms

))

= # of points in codim two component of ∆ = 0.

χR more complicated for product groups, U(1)s,
but still linear combinations of collections of points



Resolution independent lattice?
Consider the lattice Λ of 4-cycles DI ∩ DJ with
integral pairing

〈DI ∩ DJ ,DK ∩ DL〉 ≡ M(IJ)(KL) = DI · DJ · DK · DL.

Background PD(G4) is a vector G ∈ Λ.

Conjecture: Λ is resolution independent

That is, given resolutions X ,X ′ and choosing bases
Λ = Λnull ⊕ Λnd, M = 0⊕Mnd there exists an
invertible integer matrix U such that

Mnd(X ) = UTMnd(X ′)U

where Mnd is the pairing M on Λnd
∼= Hvert

2,2 (X ,Z).



Evidence
For Tate models we can come close to a proof as
Mnd ⊂ M is almost entirely specified, since

Λnull
∼= Λ̃null⊕ Λsym,null, Λsym,null = nullspace(Msym)

where Msym is the restriction of M to the sublattice
Λsym ⊂ Λ of G lifting to F-theory preserving G:

Msym(IJ)(KL) = WIJKL+κmnWIJ|m·WKL|n·Σ+KB ·WIJ ·WKL.

The pushforwards WIJKL carry structure related to
low energy gauge theory [Cvetič-Grimm-Klevers ‘13, others], e.g.
Wijk = ρRijkCR and Wij = −κij(σ), enough to
determine a rational U .



More evidence?

More generally, rank and signature of M seem to be
resolution independent.

In practice the rank of Msym is equal to the number
of independent chiral indices. E.g. in the
(SU(3)× SU(2)× U(1))/Z6 model, rankMsym = 3
and there are three independent chiral indices

χ(1,2) 3
2

, χ(3,1)− 4
3

, χ(3,1) 2
3



More evidence?

The signature of M may be related to a topological
invariant of oriented manifolds with real dimension
divisible by 4, namely the signature of the full
pairing (Hirzebruch signature theorem)

H4(X )× H4(X )→ Z

Sylvester’s law of inertia implies there exists a real
change of basis Mnd(X ) = UTMnd(X ′)U , but not
enough to show U is integer and unimodular.



Relation of chiral index to Λ

The nullspace Λnull ⊂ Λ contains all linear relations
among χR including anomaly constraints
[Bies-Mayrhofer-Weigand ‘17].

It follows that Λsym,nd ⊂ Λ is isomorphic to the
lattice of independent χR, expected to be resolution
independent on physical grounds.

E.g. in the (SU(3)× SU(2)× U(1))/Z6 model

Λsym,nd
∼= spanZ(χ(1,2) 3

2

, χ(3,1)− 4
3

, χ(3,1) 2
3

)



Relation of chiral index to Λ
The evidence however points to additional structure
for elliptic CY4s that may not require the
preservation of 4D gauge symmetry, namely that
the resolution independence of Λsym,nd lifts through
the following diagram to Λ:

Λ Λsym

Λnd Λsym,nd

〈G,DI ∩ Dα〉 = 0

/ ∼



An analogy?
Physically, it’s alluring to compare Λ (defined by the
pairing M) to the Dynkin diagram in F-theory
models:

Di ·Dj = −(σ)κij
?∼ (Di ·Dj)·(Dk ·Dl) = M(ij)(kl)
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Looking ahead

Rigorously proving resolution independence of Λ
could be useful for several future research directions:

I Possible intrinsic definition of H2,2
vert(X0,Z) in

the singular F-theory limit?

I Interpretation of chiral indices as “counting”
special points in B , computation of χR directly
in X0 (no resolution)

I Computation of H2,2
hor(Y ,Z) via mirror

symmetry [Greene-Morrison-Plesser ‘95]? If H2,2
vert(X ,Z) is

invariant over subset of Kähler moduli space, is
the “mirror” statement also true?



Thank you!


