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Motivation

How many string vacua are physically acceptable?

• Usually focus on getting correct gauge group, matter spectrum,
superpotential, etc.

Normalised couplings? Other non-BPS information

• KK spectrum for swampland
• Spectrum of CFTs
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Heterotic compactifications

Minimal SUSY on R1,3 × X with gauge bundle V [Candelas et al. ‘85]

• No H flux⇒ X is Calabi–Yau, V admits HYM connection

Physics in 4d determined by geometry of X – Kaluza–Klein reduction fixes 4d
modes

• e.g. for KK scalars, masses in 4d c.f. eigenvalues of Laplacian in 6d

∆ϕ6 = λϕ6 ⇒ �4ζ4 = λζ4 ≡ m2ζ4

• Zero modes determine low-energy physics, e.g. matter fields c.f. H1(X, VR) with
harmonic basis {ψa}
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Outline

Numerical Calabi–Yau metrics

The spectrum of the Laplacian

Application: the finite SDC
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Numerical Calabi–Yau metrics



Calabi–Yau basics

Calabi–Yau manifolds are Kähler manifolds with a Ricci-flat metric

• Existence but no explicit constructions

Kähler⇒ Kähler potential K gives (real) closed two-form J = ∂∂̄K

c1(X) = 0 ⇒ (complex) nowhere-vanishing closed (3,0)-form Ω

J3 = volJ, |Ω|2 = volΩ.
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Example: Dwork quintics

Quintic hypersurface Qψ in P4

Qψ(z) ≡ z50 + z51 + z52 + z53 + z54 − 5ψ z0z1z2z3z4 = 0

(3,0)-form Ω determined by Qψ , e.g. in z0 = 1 patch

Ω =
dz2 ∧ dz3 ∧ dz4

∂Qψ/∂z1

Metric g (and J) completely determined by Kähler potential

gīj(z, z̄) = ∂i∂̄̄jK(z, z̄), volJ ∼ detgījd
6z
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How do we measure accuracy?

The Ricci-flat metric is given by a K that satisfies (c.f. Monge–Ampère)

volJ
volΩ

∣∣∣∣
p
= constant ⇒ Rīj = 0

Define a functional of K
σ(K) =

∫
X

∣∣∣∣1− volJ
volΩ

∣∣∣∣ volΩ
The exact CY metric has σ = 0

Finding the Ricci-flat metric reduces to finding a single function K(z, z̄) that
minimises σ
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Algebraic metrics

Generalise by replacing coordinates zi with homogeneous polynomials sα of
degree k

e.g. k = 2 : sα = (z20, z0z1, z0z2, . . .)

Kähler potential is then

K(h) = log
14∑

α,β̄=0

sαhαβ̄ s̄β̄ , hαβ̄ ∼ 225 parameters

At degree k have O(k4) parameters, so can approximate the Ricci-flat metric to
arbitrary precision

• Algebraic metrics [Tian ‘90] – higher k allows better precision (smaller σ)
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How to fix hαβ̄?

Finding the “best” approximation to the Ricci-flat metric amounts to finding hαβ̄

so that σ is minimised

Three approaches:

• Iterative procedure [Donaldson ‘05; Douglas ‘06; Braun ‘07]
• Minimise σ directly [Headrick, Nassar ‘09]
• Treat σ as a loss function for a neural network [Douglas et al. 20; Anderson et al. ‘20]

One can also try to find gīj directly (need to impose Kählerity, overlap conditions,
etc.) [Anderson et al. ‘20; Jejjala ‘20]

In all cases, numerical integrals carried out by Monte Carlo
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The spectrum of the Laplacian



The (p, q) Laplacian [Braun et al. ‘08, AA ‘20]

Important phenomenological details of models determined by eigenmodes on CY

Without gauge sector, eigenmodes are (p,q)-eigenforms of the Laplacian

∆ = dδ + δd, ∆|ϕn⟩ = λn|ϕn⟩

where λn are real and non-negative and appear with multiplicity µn
(c.f. continuous or finite symmetries)

• Need some way of computing both the spectrum and the harmonic modes
themselves
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The (p, q) Laplacian

For each (p,q), given a (non-orthonormal) basis of (p,q)-forms {αp,q}, we can
expand the eigenmodes as

|ϕ⟩ =
∑
A
⟨αA|ϕ̃⟩ |αA⟩, A = 1, . . . , dim{αp,q}

so that ∆|ϕ⟩ = λ|ϕ⟩ becomes generalised eigenvalue problem for λ and ϕ̃A

⟨αA|∆|αB⟩⟨αB|ϕ̃⟩ = λ⟨αA|αB⟩⟨αB|ϕ̃⟩
⇒ ∆ABϕ̃B = λOABϕ̃B

where
OAB =

∫
αA ∧ ⋆ᾱB, etc.
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The (p, q) Laplacian

Basis {αp,q} is infinite dimensional – truncate to a finite approximate basis at
degree kϕ in zi

{αp,q} =
(degree kϕ (p, 0)-form)(degree kϕ (0,q)-form)

(|z0|2 + . . . |z4|2)kϕ

where we have (c.f. harmonic forms on P4)

{degree kϕ (0, 0)-form} = degree kϕ polynomials
{degree 2 (1, 0)-form} = {z0dz1 − z1dz0, z0dz2 − z2dz0, . . .}

1. Compute matrices ∆AB and OAB numerically for independent choices of (p,q)
2. Find eigenvalues and eigenvectors
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Toy example: P3 with FS metric

Spectrum on P3 at kϕ = 3 with exact metric and N = 106 points
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λn • Eigenvalues and
multiplicities determined by
SU(4) irreps

• SU(4) symmetry recovered
as number of integration
points→ ∞
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Fermat quintic

Fermat quintic with N = 3× 106 and kϕ = 3

Qψ=0(z) ≡ z50 + z51 + z52 + z53 + z54 = 0

(p,q) (0, 0) (1, 0) (2, 0) (3, 0) (1, 1) (2, 1)

dim{αp,q} 1225 1400 350 350 1600 400

n λn µn λn µn λn µn λn µn λn µn λn µn

0 0.00 1 43.2± 0.1 20 76.2± 0.2 30 45.3 1 7.0 1 56.4± 0.1 20

1 41.1± 0.2 20 67.0± 0.2 30 78.1± 0.2 30 97.9± 0.3 20 50.4± 0.2 50∗ 59.2± 0.2 20

2 78.7± 0.3 20 73.3± 0.2 30 82.0± 0.1 20 102± 0.3 20 56.2± 0.2 20 70.5± 0.2 30

3 84.5± 0.1 4 84.6± 0.2 34∗ 94.5± 0.2 20 116± 0.1 4 82.5± 0.2 60 92.3± 0.4 60

4 94.6± 0.6 60 96.0± 0.2 20 115± 0.3 40 127± 0.5 30 84.2± 0.3 120 99.7± 0.2 4

5 101± 1 30 99.6± 0.3 60 122± 0.3 30 142± 0.6 30 85.2± 0.2 60 111± 0.4 40

• Multiplicities = dimension of irreps of (S5 × Z2)n (Z5)
4

• Ω and J should give zero modes for (3, 0) and (1, 1) – improves as size of
approximate basis is increased
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“Typical” properties

What are the “typical” or average properties of a Calabi–Yau as a function of
moduli?

• Spectral gap λ1?
• Statistics of full spectrum?

Important for understanding landscape of string compactifications and properties
of CFTs!

• Without fixing moduli, what kind of physics is possible
• Low-energy modes of CFT captured by spectrum of ∆ on target space
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Ensembles of CYs [Afkhami-Jeddi, AA, Córdova]

Generic quintic threefold given by quintic equation in P4

Q ≡
∑

m,n,p,q,r
cmnpqrzmznzpzqzr = 0

101 complex structure parameters

Choose the cmnpqr randomly from disk in complex plane

cmnpqr ∈ C, |cmnpqr| < 1

Then compute the approximate CY metric and the spectrum of the scalar
Laplacian for each instance
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Distribution of eigenvalues

Compute metric and scalar spectrum for 1000 samples

• Gives statistical non-BPS CY “data”
• Mean gap ⟨λ1⟩ = 35.7
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Application: the finite SDC



The swampland distance conjecture

The Swampland Distance Conjecture [Ooguri, Vafa ‘06]
For a theory coupled to gravity with a moduli space parametrised by vevs of
some fields, moving an infinite distance in moduli space brings down a tower of
massless states that spoil the initial effective theory.

Finite version: there is a relation between the mass of a tower of states and the
distance you move in moduli space

• Expectation: trans-Planckian distance→ tower of exponentially light states
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The swampland distance conjecture

Compare the effective theory at two points p0 and p1 in moduli space which are a
geodesic distance d(p0,p1) apart

 

Geodesic γ with γ(τi) = pi with dis-
tance along curve given by

d(p0,p1) =
∫ τ2

τ1

√
Gabγ̇aγ̇b

where Gab is metric on moduli space

Conjecture implies that a tower of states becomes light on moving from p0 to p1
with masses of the order

m(p1) ∼ m(p0)e−α d(p0,p1)

where α is order one 18



A check of the SDC for complex structure [AA, Ruehle ‘21]

We can compute the spectrum of massive KK modes numerically and check the
conjecture for this tower of states on the quintic Qψ

Focus on complex structure moduli space ψ ∈ [2, 1000]

1. Compute the moduli space metric
[Candelas et al. ‘98; Keller, Lukic ‘09]

e−Kcs = i
∫
Qψ

Ω∧Ω̄, Gab̄ = ∂a∂̄b̄Kcs

2. Compute geodesics and distances
in moduli space

3. Compute the numerical CY metric
and the spectrum of the
Laplacian – focus on scalar
spectrum

�������
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Scalar spectrum with varying ψ

5 10 50 100 500 1000

ψ

0

20

40

60

80

100

λ

Eigenvalue

λ1, µ = 1

λ2, µ = 20

λ3, µ = 4

λ4, µ = 30

λ5, µ = 20

λ6, µ = 5

λ7, µ = 4
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of (S5 × Z2)n (Z5)

3

2. Eigenvalues with small
degeneracy become lighter

3. Local maximum in spectral
gap for ψ ≈ 4
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A check of the SDC

1. λ2 falls exponentially as

λ2 = 56.4 e−(0.906±0.034) d(2,ρ)

∼ e−2α d(p0,p1)

2. We see α ≈ 0.45 which is indeed
order one

3. Almost saturates lower bound of
1/

√
6 ≈ 0.41 of [Andriot et al. ‘20]
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Summary and outlook

Calabi–Yau metrics are accessible with numerical methods

Spectrum is source of interesting non-BPS “data” with uses in CFTs, swampland,
etc.

• Include gauge fields
• Works for bundles too and can diagnose stability [Douglas et al. ‘06; Anderson et
al. ‘10; Anderson et al. ‘11]

• Yukawa couplings?
• CY threefolds appear as target spaces for (2, 2) SCFTs

• Spectrum of CY ⊂ spectrum of CFT operators
• Input for conformal bootstrap? [Lin et al. ‘15; Lin et al. ‘16]

• Typical compactifications? Distribution of Yukawa couplings? Crossing in
eigenvalues? SYZ conjecture?
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Thank you!
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