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How many string vacua are physically acceptable?

- Usually focus on getting correct gauge group, matter spectrum,
superpotential, etc.

Normalised couplings? Other non-BPS information

- KK spectrum for swampland

- Spectrum of CFTs



Heterotic compactifications

Minimal SUSY on R'3 x X with gauge bundle v
- No H flux = Xis Calabi-Yau, V admits HYM connection

Physics in 4d determined by geometry of X — Kaluza-Klein reduction fixes 4d
modes

- e.g. for KK scalars, masses in 4d c.f. eigenvalues of Laplacian in 6d
Ags = Aps = Dala= A =m*(y

- Zero modes determine low-energy physics, e.g. matter fields c.f. HY(X, Vg) with
harmonic basis {¢q}



Numerical Calabi-Yau metrics
The spectrum of the Laplacian

Application: the finite SDC



Numerical Calabi-Yau metrics



Calabi-Yau basics

Calabi-Yau manifolds are Kahler manifolds with a Ricci-flat metric
- Existence but no explicit constructions
Kahler = Kahler potential K gives (real) closed two-form J = 80K

c1(X) = 0 = (complex) nowhere-vanishing closed (3,0)-form €

B =vol, |9 =volg.



Example: Dwork quintics

Quintic hypersurface Qy in P*
QD) =R +B+ 2+ 2+ 25 — 52021227324 = 0
(3,0)-form Q determined by Q, e.g. in zo = 1 patch

Q- dzo A dzg A dzy
B 8Q¢/821

Metric g (and J) completely determined by Kahler potential

95(z.2) = 00K(z,2), ~ volj ~ detg;d°z



How do we measure accuracy?

The Ricci-flat metric is given by a K that satisfies (c.f. Monge-Ampére)

voly
volg

=constant = R;=0
P

a(K):/X 1

The exact CY metrichas o =0

Define a functional of K
VO[/

VOlQ OLQ

Finding the Ricci-flat metric reduces to finding a single function K(z,z) that
minimises o



Algebraic metrics

Generalise by replacing coordinates z; with homogeneous polynomials s, of
degree k
eg R=2: s4= (2% 2021,2022,...)

Kahler potential is then
14 B ~
K(h)=1log > sah*¥55,  h*¥ ~ 225 parameters
a,BZO

At degree k have O(k*) parameters, so can approximate the Ricci-flat metric to
arbitrary precision

- Algebraic metrics - higher k allows better precision (smaller o)



How to fix heA3?

Finding the “best” approximation to the Ricci-flat metric amounts to finding hoB
so that o is minimised

Three approaches:
- Iterative procedure

- Minimise o directly
- Treat o as a loss function for a neural network

One can also try to find gj; directly (need to impose Kahlerity, overlap conditions,
etc.)

In all cases, numerical integrals carried out by Monte Carlo



The spectrum of the Laplacian




The (p, ) Laplacian [Braun et al. ‘08, AA 20]

Important phenomenological details of models determined by eigenmodes on CY

Without gauge sector, eigenmodes are (p, g)-eigenforms of the Laplacian
A:d5+5d> A|¢n> :)\n|¢n>

where X\, are real and non-negative and appear with multiplicity un
(c.f. continuous or finite symmetries)

- Need some way of computing both the spectrum and the harmonic modes
themselves



The (p, q) Laplacian

For each (p, g), given a (non-orthonormal) basis of (p, q)-forms {ap 4}, we can
expand the eigenmodes as

|9) = Z<O‘A|Q~S> |a), A=1,..., dim{ap,q}

A

so that A|¢) = A|¢) becomes generalised eigenvalue problem for A and b

(cal Alas) (as|d) = A{aa|as) (aslo)
= Ao = A\Opsds

where
Opg = /aA N xag, etc.
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The (p, q) Laplacian

Basis {ap,q} is infinite dimensional - truncate to a finite approximate basis at
degree Ry in z;

degree Ry (p,0)-form)(degree ky (0, q)-form)

R
(20> + .. - za?)™

{apq} = (

where we have (c.f. harmonic forms on P*)

{degree Ry (0,0)-form} = degree kg polynomials
{degree 2 (1,0)-form} = {zydz; — z:dzy, 290dzs — 25dZ, ...}

1. Compute matrices Aag and Oapg numerically for independent choices of (p, q)

2. Find eigenvalues and eigenvectors

1



Toy example: P2 with FS metric

Spectrum on P? at ks = 3 with exact metric and N = 10° points

An - Eigenvalues and
140 "y multiplicities determined by
120f 2 B SU(4) irreps
100} - - SU(4) symmetry recovered
80f S as number of integration
.- k- - .
60| . + . points — oo
a0t 4 o+
-+ —+- -+ -+
20+
(P.9)

(OjO) (1,‘0) (2,‘0) (3,‘0) (1j1) (2:1)
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Fermat quintic

Fermat quintic with N = 3 x 10° and ky, = 3

Queo(D) =2 +B+5+25+2,=0

(p,9) (0,0) (1,0 (2,0) (3,0) (1,1 21
dim{apq} 1225 1400 350 350 1600 400

n An Hn An Hn An Hn An Hn An Hn An Hn

0 0.00 1 1432+0.1 20 |76.2+0.2 30 45.3 1 7.0 1 [56.44+01 20

1 41.1+0.2 20 |67.0+02 30 | 781+0.2 30 |979+03 20 |504+02 50" |59.24+02 20

2 78.7+£0.3 20 |73.3+£0.2 30 |82.0+0.1 20| 102+£0.3 20 |56.2+02 20 |70.5+0.2 30

3 84.5+0.1 4 |84.6+0.2 34*|945+0.2 20| 116+£0.1 4 |825+0.2 60 |92.3+0.4 60

4 94.6+0.6 60 |96.0+0.2 20 | 115+0.3 40| 127+0.5 30 | 84.2+0.3 120 |99.7+0.2 4

5 101+1 30 |1996+03 60 | 122+0.3 30| 142406 30 |85.2+0.2 60 | 111+04 40

- Multiplicities = dimension of irreps of (S5 x Zs) x (Zs)*
- Q and J should give zero modes for (3,0) and (1,1) - improves as size of
approximate basis is increased
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“Typical” properties

What are the “typical” or average properties of a Calabi-Yau as a function of
moduli?

- Spectral gap A1?

- Statistics of full spectrum?

Important for understanding landscape of string compactifications and properties
of CFTs!

- Without fixing moduli, what kind of physics is possible

- Low-energy modes of CFT captured by spectrum of A on target space



Ensembles of CYs [Afkhami-Jeddi, AA, Cordoval

Generic quintic threefold given by quintic equation in P4

Q = Z CmnpqumZanZqu = 0
m7n7p7Q’r

101 complex structure parameters

Choose the cmnpgr randomly from disk in complex plane

Cmnpgr € C, ’Cmnpqr| <1

Then compute the approximate CY metric and the spectrum of the scalar
Laplacian for each instance
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Distribution of eigenvalues

Compute metric and scalar spectrum for 1000 samples

- Gives statistical non-BPS CY “data”
- Mean gap (A1) = 35.7

p(a;) for QF with average over 101 moduli

Density for QF with average over 101 moduli
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Application: the finite SDC




The swampland distance conjecture

The Swampland Distance Conjecture

For a theory coupled to with a moduli space parametrised by vevs of

some fields, moving an in moduli space brings down a tower of
that spoil the initial effective theory.

Finite version: there is a relation between the of a tower of states and the
you move in moduli space

- Expectation: trans-Planckian distance — tower of exponentially light states



The swampland distance conjecture

Compare the effective theory at two points pg and p; in moduli space which are a
geodesic distance d(pg, p1) apart

Geodesic v with (7)) = p; with dis-
tance along curve given by

T2
d(Po, p1) = / /Ga 794
T1

where Ggp, Is metric on moduli space

Conjecture implies that a tower of states becomes light on moving from pg to py
with masses of the order

m(p1) ~ m(po)e4(Po-P)

where o is order one



A check of the SDC for complex structure [AA, Ruehle 21]

We can compute the spectrum of massive KK modes numerically and check the
conjecture for this tower of states on the quintic Qy

Focus on complex structure moduli space v € [2,1000]

1. Compute the moduli space metric

eiKCS = |/ Q/\Q, GCIE = 8055KCS
Qy

2. Compute geodesics and distances
in moduli space

3. Compute the numerical CY metric S5 ’2
and the spectrum of the ~L
Laplacian - focus on scalar n
spectrum

=— 4 =0.256 == d=0232 == d=0.332



Scalar spectrum with varying

100 1. Zero mode always present;

, massive modes appear with
80 Eigenvalue . 5 _on0 . .

] N multiplicities given by irreps
6o Ao, =20 of (55 X Zg) X (Z5)3

r — A3, p=4

~< o o
ol — M =30 2. Eigenvalues with small
40F — A p=20 )
— e =5 degeneracy become lighter

20' A7, p=4 . i

| 3. Local maximum in spectral
ok gap fory ~ 4

5 10 50 100 500 1000
]
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A check of the SDC

1. Ao falls exponentially as

Ay = 56.4 ¢~ (0:9060.034)d(2,p)

~ e_2a d(po,p1)

2. We see a =~ 0.45 which is indeed
order one

In A\

3. Almost saturates lower bound of
1/v/6 ~ 0.41 of

0. 0.2 0.4 0.6 0.8 i, 1.2
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Summary and outlook

Calabi-Yau metrics are accessible with numerical methods

Spectrum is source of interesting non-BPS “data” with uses in CFTs, swampland,
etc.

- Include gauge fields
- Works for bundles too and can diagnose stability

- Yukawa couplings?
- CY threefolds appear as target spaces for (2,2) SCFTs
- Spectrum of CY C spectrum of CFT operators
- Input for conformal bootstrap?
- Typical compactifications? Distribution of Yukawa couplings? Crossing in
eigenvalues? SYZ conjecture?
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Thank you!
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