

Numerical Metrics and the Swampland Distance Conjecture

Anthony Ashmore

University of Chicago & Sorbonne Université

2011.13929 AA 2103.07472 AA, F. Ruehle 2107.XXXXX N. Afkhami-Jeddi, AA, C. Córdova

Motivation

How many string vacua are physically acceptable?

• Usually focus on getting correct gauge group, matter spectrum, superpotential, etc.

Normalised couplings? Other non-BPS information

- KK spectrum for swampland
- $\cdot \ \, \text{Spectrum of CFTs}$

Heterotic compactifications

Minimal SUSY on $\mathbb{R}^{1,3} \times X$ with gauge bundle V [Candelas et al. '85]

• No H flux \Rightarrow X is Calabi-Yau, V admits HYM connection

Physics in 4d determined by geometry of *X* – Kaluza–Klein reduction fixes 4d modes

• e.g. for KK scalars, masses in 4d c.f. eigenvalues of Laplacian in 6d

$$\Delta\phi_6 = \lambda\phi_6 \quad \Rightarrow \quad \Box_4\zeta_4 = \lambda\zeta_4 \equiv m^2\zeta_4$$

• Zero modes determine low-energy physics, e.g. matter fields c.f. $H^1(X, V_R)$ with harmonic basis $\{\psi_a\}$

2

Outline

Numerical Calabi-Yau metrics

The spectrum of the Laplacian

Application: the finite SDC

Numerical Calabi–Yau metrics

Calabi-Yau basics

Calabi-Yau manifolds are Kähler manifolds with a Ricci-flat metric

• Existence but no explicit constructions

Kähler
$$\Rightarrow$$
 Kähler potential K gives (real) closed two-form $J = \partial \bar{\partial} K$ $c_1(X) = 0 \Rightarrow$ (complex) nowhere-vanishing closed (3,0)-form Ω

$$J^3 = \operatorname{vol}_J, \qquad |\Omega|^2 = \operatorname{vol}_\Omega.$$

Example: Dwork quintics

Quintic hypersurface Q_{ψ} in \mathbb{P}^4

$$Q_{\psi}(\mathbf{z}) \equiv \mathbf{z}_0^5 + \mathbf{z}_1^5 + \mathbf{z}_2^5 + \mathbf{z}_3^5 + \mathbf{z}_4^5 - 5\psi \, \mathbf{z}_0 \mathbf{z}_1 \mathbf{z}_2 \mathbf{z}_3 \mathbf{z}_4 = 0$$

(3,0)-form Ω determined by Q_{ψ} , e.g. in $z_0 = 1$ patch

$$\Omega = \frac{\mathrm{d} z_2 \wedge \mathrm{d} z_3 \wedge \mathrm{d} z_4}{\partial Q_\psi / \partial z_1}$$

Metric g (and J) completely determined by Kähler potential

$$g_{i\bar{j}}(z,\bar{z}) = \partial_i \bar{\partial}_{\bar{j}} K(z,\bar{z}), \qquad \text{vol}_J \sim \det g_{i\bar{j}} \mathrm{d}^6 z$$

5

How do we measure accuracy?

The Ricci-flat metric is given by a K that satisfies (c.f. Monge–Ampère)

$$\left. \frac{\operatorname{vol}_{J}}{\operatorname{vol}_{\Omega}} \right|_{p} = \operatorname{constant} \quad \Rightarrow \quad R_{i\bar{j}} = 0$$

Define a functional of K

$$\sigma(K) = \int_{X} \left| 1 - \frac{\operatorname{vol}_{J}}{\operatorname{vol}_{\Omega}} \right| \operatorname{vol}_{\Omega}$$

The exact CY metric has $\sigma = 0$

Finding the Ricci-flat metric reduces to finding a single function $K(z,\bar{z})$ that minimises σ

Algebraic metrics

Generalise by replacing coordinates z_i with homogeneous polynomials s_{α} of degree k

e.g.
$$k = 2$$
: $s_{\alpha} = (z_0^2, z_0 z_1, z_0 z_2, ...)$

Kähler potential is then

$$K(h) = \log \sum_{\alpha, ar{eta} = 0}^{14} \mathsf{s}_{\alpha} h^{\alpha ar{eta}} \bar{\mathsf{s}}_{ar{eta}}, \qquad h^{\alpha ar{eta}} \sim 225 \; \mathsf{parameters}$$

At degree k have $\mathcal{O}(k^4)$ parameters, so can approximate the Ricci-flat metric to arbitrary precision

• Algebraic metrics [Tian '90] – higher k allows better precision (smaller σ)

How to fix $h^{\alpha\bar{\beta}}$?

Finding the "best" approximation to the Ricci-flat metric amounts to finding $h^{\alpha\bar{\beta}}$ so that σ is minimised

Three approaches:

- Iterative procedure [Donaldson '05; Douglas '06; Braun '07]
- Minimise σ directly [Headrick, Nassar '09]
- \cdot Treat σ as a loss function for a neural network [Douglas et al. 20; Anderson et al. '20]

One can also try to find $g_{i\bar{j}}$ directly (need to impose Kählerity, overlap conditions, etc.) [Anderson et al. '20; Jejjala '20]

In all cases, numerical integrals carried out by Monte Carlo

The spectrum of the Laplacian

The (p,q) Laplacian [Braun et al. '08, AA '20]

Important phenomenological details of models determined by eigenmodes on CY Without gauge sector, eigenmodes are (p,q)-eigenforms of the Laplacian

$$\Delta = d\delta + \delta d, \qquad \Delta |\phi_n\rangle = \lambda_n |\phi_n\rangle$$

where λ_n are real and non-negative and appear with multiplicity μ_n (c.f. continuous or finite symmetries)

 Need some way of computing both the spectrum and the harmonic modes themselves

The (p, q) Laplacian

For each (p,q), given a (non-orthonormal) basis of (p,q)-forms $\{\alpha_{p,q}\}$, we can expand the eigenmodes as

$$|\phi\rangle = \sum_{A} \langle \alpha_A | \tilde{\phi} \rangle | \alpha_A \rangle, \qquad A = 1, \dots, \dim\{\alpha_{p,q}\}$$

so that $\Delta|\phi\rangle=\lambda|\phi\rangle$ becomes generalised eigenvalue problem for λ and $\tilde{\phi}_{\rm A}$

$$\langle \alpha_{A} | \Delta | \alpha_{B} \rangle \langle \alpha_{B} | \tilde{\phi} \rangle = \lambda \langle \alpha_{A} | \alpha_{B} \rangle \langle \alpha_{B} | \tilde{\phi} \rangle$$

$$\Rightarrow \Delta_{AB} \tilde{\phi}_{B} = \lambda O_{AB} \tilde{\phi}_{B}$$

where

$$O_{AB}=\int lpha_A\wedge\stararlpha_B,\quad ext{etc.}$$

The (p, q) Laplacian

Basis $\{\alpha_{p,q}\}$ is infinite dimensional – truncate to a finite approximate basis at degree k_{ϕ} in z_i

$$\{\alpha_{p,q}\} = \frac{(\text{degree } k_{\phi} \ (p,0)\text{-form})(\text{degree } k_{\phi} \ (0,q)\text{-form})}{\left(|z_0|^2 + \dots |z_4|^2\right)^{k_{\phi}}}$$

where we have (c.f. harmonic forms on \mathbb{P}^4)

$$\{\text{degree }k_{\phi}\;(0,0)\text{-form}\} = \text{degree }k_{\phi}\;\text{polynomials}$$

$$\{\text{degree }2\;(1,0)\text{-form}\} = \{z_0 \mathsf{d}z_1 - z_1 \mathsf{d}z_0, z_0 \mathsf{d}z_2 - z_2 \mathsf{d}z_0, \ldots\}$$

- 1. Compute matrices Δ_{AB} and O_{AB} numerically for independent choices of (p,q)
- 2. Find eigenvalues and eigenvectors

Toy example: \mathbb{P}^3 with FS metric

Spectrum on \mathbb{P}^3 at $k_\phi=3$ with exact metric and $\mathit{N}=10^6$ points

- Eigenvalues and multiplicities determined by SU(4) irreps
- SU(4) symmetry recovered as number of integration points $\rightarrow \infty$

Fermat quintic

Fermat quintic with $N=3 imes 10^6$ and $k_\phi=3$

$$Q_{\psi=0}(z) \equiv z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$$

(p,q)	(0,0)		(1,0)		(2,0)		(3,0)		(1,1)		(2,1)	
$\dim\{\alpha_{p,q}\}$	1225		1400		350		350		1600		400	
n	λ_n	μ_n	λ_n	μ_{n}	λ_n	μ_{n}	λ_n	μ_n	λ_n	μ_{n}	λ_n	μ_{n}
0	0.00	1	43.2 ± 0.1	20	76.2 ± 0.2	30	45.3	1	7.0	1	56.4 ± 0.1	20
1	41.1 ± 0.2	20	67.0 ± 0.2	30	78.1 ± 0.2	30	97.9 ± 0.3	20	50.4 ± 0.2	50*	59.2 ± 0.2	20
2	78.7 ± 0.3	20	73.3 ± 0.2	30	82.0 ± 0.1	20	102 ± 0.3	20	56.2 ± 0.2	20	70.5 ± 0.2	30
3	84.5 ± 0.1	4	84.6 ± 0.2	34^{*}	94.5 ± 0.2	20	116 ± 0.1	4	82.5 ± 0.2	60	92.3 ± 0.4	60
4	94.6 ± 0.6	60	96.0 ± 0.2	20	115 ± 0.3	40	127 ± 0.5	30	84.2 ± 0.3	120	99.7 ± 0.2	4
5	101 ± 1	30	99.6 ± 0.3	60	122 ± 0.3	30	142 ± 0.6	30	85.2 ± 0.2	60	111 ± 0.4	40

- Multiplicities = dimension of irreps of $(S_5 \times \mathbb{Z}_2) \ltimes (\mathbb{Z}_5)^4$
- Ω and J should give zero modes for (3,0) and (1,1) improves as size of approximate basis is increased

"Typical" properties

What are the "typical" or average properties of a Calabi–Yau as a function of moduli?

- Spectral gap λ_1 ?
- · Statistics of full spectrum?

Important for understanding landscape of string compactifications and properties of CFTs!

- · Without fixing moduli, what kind of physics is possible
- \cdot Low-energy modes of CFT captured by spectrum of Δ on target space

Generic quintic threefold given by quintic equation in \mathbb{P}^4

$$Q \equiv \sum_{m,n,p,q,r} c_{mnpqr} z_m z_n z_p z_q z_r = 0$$

101 complex structure parameters

Choose the c_{mnpqr} randomly from disk in complex plane

$$c_{mnpqr} \in \mathbb{C}, \qquad |c_{mnpqr}| < 1$$

Then compute the approximate CY metric and the spectrum of the scalar Laplacian for each instance

Distribution of eigenvalues

Compute metric and scalar spectrum for 1000 samples

- · Gives statistical non-BPS CY "data"
- Mean gap $\langle \lambda_1 \rangle = 35.7$

Application: the finite SDC

The swampland distance conjecture

The Swampland Distance Conjecture [Ooguri, Vafa '06]

For a theory coupled to gravity with a moduli space parametrised by vevs of some fields, moving an infinite distance in moduli space brings down a tower of massless states that spoil the initial effective theory.

Finite version: there is a relation between the mass of a tower of states and the distance you move in moduli space

 \cdot Expectation: trans-Planckian distance o tower of exponentially light states

The swampland distance conjecture

Compare the effective theory at two points p_0 and p_1 in moduli space which are a geodesic distance $d(p_0, p_1)$ apart

Geodesic γ with $\gamma(\tau_i) = p_i$ with distance along curve given by

$$d(p_0, p_1) = \int_{\tau_1}^{\tau_2} \sqrt{G_{ab} \dot{\gamma}^a \dot{\gamma}^b}$$

where G_{ab} is metric on moduli space

Conjecture implies that a tower of states becomes light on moving from p_0 to p_1 with masses of the order

$$m(p_1) \sim m(p_0) e^{-\alpha d(p_0, p_1)}$$

where α is order one

A check of the SDC for complex structure [AA, Ruehle '21]

We can compute the spectrum of massive KK modes numerically and check the conjecture for this tower of states on the quintic Q_{ψ}

Focus on complex structure moduli space $\psi \in [2, 1000]$

 Compute the moduli space metric [Candelas et al. '98; Keller, Lukic '09]

$$\mathrm{e}^{-\mathrm{K}_{\mathrm{CS}}} = \mathrm{i} \int_{Q_{\psi}} \Omega \wedge \bar{\Omega}, \quad \mathsf{G}_{a\bar{b}} = \partial_{a} \bar{\partial}_{\bar{b}} \mathsf{K}_{\mathrm{CS}}$$

- 2. Compute geodesics and distances in moduli space
- Compute the numerical CY metric and the spectrum of the Laplacian – focus on scalar spectrum

Scalar spectrum with varying ψ

- 1. Zero mode always present; massive modes appear with multiplicities given by irreps of $(S_5 \times \mathbb{Z}_2) \ltimes (\mathbb{Z}_5)^3$
- 2. Eigenvalues with small degeneracy become lighter
- 3. Local maximum in spectral gap for $\psi\approx 4$

A check of the SDC

1. λ_2 falls exponentially as

$$\lambda_2 = 56.4 \,\mathrm{e}^{-(0.906 \pm 0.034) \,d(2,\rho)}$$

$$\sim \mathrm{e}^{-2\alpha \,d(p_0,p_1)}$$

- 2. We see $\alpha \approx 0.45$ which is indeed order one
- 3. Almost saturates lower bound of $1/\sqrt{6}\approx 0.41$ of [Andriot et al. '20]

Summary and outlook

Calabi-Yau metrics are accessible with numerical methods

Spectrum is source of interesting non-BPS "data" with uses in CFTs, swampland, etc.

- Include gauge fields
 - Works for bundles too and can diagnose stability [Douglas et al. '06; Anderson et al. '10; Anderson et al. '11]
 - · Yukawa couplings?
- CY threefolds appear as target spaces for (2,2) SCFTs
 - Spectrum of CY \subset spectrum of CFT operators
 - Input for conformal bootstrap? [Lin et al. '15; Lin et al. '16]
- Typical compactifications? Distribution of Yukawa couplings? Crossing in eigenvalues? SYZ conjecture?

Thank you!