How to Give Chiral Fermions a Mass

David Tong
String Pheno 2021

Based on 2009.05037 with Shlomo Razamat, and 2104.03997

Symmetric Mass Generation

Giving masses to fermions preserving symmetries that you might naively think should be broken.

Motivation

- Nielsen-Ninomiya theorem

c.f. Eichten and Preskill '86
- Interacting topological insulators

c.f. Fidkowski and Kitaev, ‘09

The Obstacle: the 't Hooft Anomaly

Consider a global symmetry G

't Hooft anomaly $=$ obstruction to gauging

The 't Hooft anomaly characterises the symmetry and does not change under deformations or RG.

The Obstacle: the 't Hooft Anomaly

- If the the ' t Hooft anomaly for a continuous global symmetry is non-vanishing then the theory must be gapless.
- In a chiral gauge theory, the 't Hooft anomaly necessarily vanishes! So there is no obstacle to gapping fermions.

How to Gap Chiral Fermions

How to Gap Chiral Fermions

We must typically add new degrees of freedom.

How to Gap Chiral Fermions

We must typically add new degrees of freedom.

i.e. chiral + vector-like $=$ vector-like

Basic idea

Take a collection of chiral fermions transforming under some symmetry, let's call it G

$$
\psi_{L}, \quad \chi_{L}, \quad \lambda_{L} \quad \text { and } \quad \psi_{R}
$$

Now introduce a new additional confining force that acts on some subset of the fermions, say just the left-handed ones above.

In certain, very special circumstances, these fermions can bind together into a new massless composite fermion.

$$
\psi_{\text {new }}=\psi_{L} \chi_{L} \rho_{L}
$$

where, if you're lucky, $\psi_{\text {new }}$ transforms under G in the same way as ψ_{R}. Then

$$
\mathcal{L}_{4-\text { fermi }} \sim \psi_{L} \chi_{L} \rho_{L} \psi_{R}^{\dagger} \longrightarrow \psi_{\text {new }} \psi_{R}^{\dagger}
$$

The Catch

- Usually confinement comes along with chiral symmetry breaking.
- In the present context, this typically means G is spontaneously broken, ruining our hard work.

Upshot

Symmetric mass generation \square Confinement without chiral symmetry breaking

Example: The Standard Model

$$
G=S U(3) \times S U(2) \times U(1)
$$

(left-handed) ${ }^{\text {c }}$

$(\mathbf{1}, \mathbf{2})_{-3} \quad(\overline{\mathbf{3}}, \mathbf{2})_{+1}$
right-handed

$(\mathbf{1}, \mathbf{1})_{+6}$
$(\mathbf{3}, \mathbf{1})_{-4}$
$(\mathbf{3}, \mathbf{1})_{+2}$

Example: The Standard Model

$$
G=S U(3) \times S U(2) \times U(1)
$$

(left-handed) ${ }^{\text {c }}$

$(\mathbf{1}, \mathbf{2})_{-3} \quad(\overline{\mathbf{3}}, \mathbf{2})_{+1}$
$(1,2)_{-3}$
$(1,2)_{+3}$
$(\mathbf{1}, \mathbf{1})_{+6}$
$(\mathbf{3}, \mathbf{1})_{-4}$
$(\mathbf{3}, \mathbf{1})_{+2}$
$(\mathbf{1}, \mathbf{1})_{0}$
$(\mathbf{3}, \mathbf{1})_{+2} \quad(\mathbf{1}, \mathbf{1})_{0}$
$(\overline{3}, \mathbf{1})_{-2}$

- Add three further pairs of fermions
- Note: these are all vector-like and can be made heavy

Example: The Standard Model

$$
G=S U(3) \times S U(2) \times U(1)
$$

(left-handed) ${ }^{\text {c }}$

- Add three further pairs of fermions
- Gauge the $\mathrm{H}=\mathrm{SU}(2)$ symmetry.
- We should also introduce a scalar to ensure that $\mathrm{H}=\mathrm{SU}(2)$ is initially broken and the gauge bosons heavy.

Example: The Standard Model

$$
G=S U(3) \times S U(2) \times U(1)
$$

- Add three further pairs of fermions
- Gauge the $H=S U(2)$ symmetry. This gauge theory has an $\operatorname{SU}(6)$ flavour symmetry

$$
G \subset S U(6)_{\text {flavour }}
$$

- When $\operatorname{SU}(2)$ confines, it will spontaneously break $\operatorname{SU}(6)$ and hence, sadly, G.

Example: The Standard Model

$$
G=S U(3) \times S U(2) \times U(1)
$$

(left-handed) ${ }^{\text {c }}$

- Add three further pairs of fermions
- Gauge the $\mathrm{H}=\mathrm{SU}(2)$ symmetry
- Supersymmetrize.
- Add scalar superpartners for all fermions and a $H=S U(2)$ gaugino

Example: The Standard Model

- The $H=S U(2)$ gauge theory is coupled to six doublets.
- This confines without breaking the global symmetry.
- The low-energy physics consists of 15 free mesons:

$$
\epsilon_{a b} L^{a} L^{b} \quad \epsilon_{i j k} D^{i} D^{j} \quad L^{a} D^{i} \quad L^{a} N \quad D^{i} N
$$

Example: The Standard Model

If we add the superpotential, invariant under $G=S U(3) \times S U(2) \times U(1)$

$$
\mathcal{W}_{U V}=\epsilon_{a b} L^{a} L^{b} E+\epsilon_{i j k} D^{i} D^{j} U^{k}+\epsilon_{a b} L^{a} D^{i} Q_{i}^{b}+\epsilon_{a b} L^{a} N L^{\prime b}+D^{i} N D_{i}^{\prime}
$$

But, in the infra-red, this becomes

$$
\mathcal{W}_{I R}=\widetilde{E} E+\widetilde{U}_{k} U^{k}+\widetilde{Q}_{b}^{i} Q_{i}^{b}+\widetilde{L}^{b} L^{\prime b}+\widetilde{D}_{i} D_{i}^{\prime}
$$

This gaps all fermions without breaking $G=S U(3) \times S U(2) \times U(1)$

A Gapping Mechanism for the Standard Model

Note: Supersymmetry just a crutch. The mechanism survives supersymmetry breaking.

Thank you for your attention

