On the origin of gravitational wave sources

Tomek Bulik

Astronomical Observatory University of Warsaw and Astrocent, CAMK

Outline

- GW detections
- Source properties
- Models and their predictions
- Models vs data
- What next?

LIGO i Virgo

Current status of detections

- What can be measured:
 - Chirp mass
 - Mass and mass ratio
 - Effective spin
 - Effective precession

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}.$$

Effective spin

Effective precession spin

$$\chi_p = \max \left[|s_1| \sin \theta_1, \left(\frac{4q+3}{4+3q} \right) q |s_2| \sin \theta_2 \right]$$

Masses in the Stellar Graveyard

 \equiv

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

Masses and mass ratios

Primary mass

Peaks in the stellar mass region

Long tail to high masses

Spins and masses

Spins and masses

Spin distribution

Slight tendency toward positive values

Spins are small

Rates vs redshift

What is their origin?

- Stellar models
 - Binary evolution (filed, chemically homogenous, etc.)
 - Cluster evolution (including nuclear cluster
- Primordial BHs

Isolated binary evolution

Masses

- must come from stellar evolution
- PPS mass maximum
 - ~ 60-70 Msun
- Effective spins
 - should be aligned at least partially
 - Small or large?
- Rates
 - Should follow SFR

Fig. 1. An example evolutionary scenario leading to formation of a double black hole binary. For details see the text.

Cluster evolution

Masses

 Can be much larger (hierarchical mergers)

Spins

- Random not aligned
- Small, large (2nd generation)

Rates

 Should peak at higher redshift (peak of GC formation)

Primordial binaries

- Masses
 - Correspond to phase transitions in the Early universe (can be below 3Msun)
- Spins
 - Random, small
- Rates
 - Do not have to follow SFR

Comparison with observations

The merger rate densities

- BBH estimate $R = 17 45 {\rm Gpc}^{-3} {\rm yr}^{-1}$
- BNS estimate $R = 13 1900 {\rm Gpc}^{-3} {\rm yr}^{-1}$
- BHNS estimate $R = 7.4 320 {\rm Gpc}^{-3} {\rm yr}^{-1}$
- The local supernova rate $\sim 10^5 {\rm Gpc}^{-3} {\rm yr}^{-1}$
- The BH formation rate is $\sim 10^4 {\rm Gpc}^{-3} {\rm yr}^{-1}$
- About 1 black hole in a 100-1000 ends up in a merging binary
- Similarily NS: 1 in 100-1000 is in a merging binary!

SFR

BHBH formation efficiency

$$X_{BHBH} = \frac{N_{BHBH}}{M_*}$$

If all BHs end up in merging binaries and with Salpeter IMF

$$X_{BHBH}^{max} = 1.8 \times 10^{-3} M_{\odot}^{-1}$$

Basic rate arguments

- Formation scenario must be generic
- Exceptional environments must produce BBH and BNS with very high efficiency
- Dense rebions are not favoured, but do contribute
- I am sceptical about exotic models

Binary evolution

- Masses –we see too heavy BHs
- Spins
 - slightly positive
 - are small spins a problem?
- Rates increase with z

Cluster evolution

- Masses extend above PPSN gap
- Spins
 - why positive?, consistent with an isotropic subpopulation
- Rates
 - increase but follow SFR
 - Is there a peak at z=2-3?

Primordial

- Distribution of masses, lack of BHs below the stellar limit.
- Spins positive
 - But a sub-population possible
- Why do the rates follow SFR?
 - Rate conspiracy?

How does it look

Model	Masses	Spins	Rates
Binary			
Cluster			
Promordial			

What next

ET and Cosmic Explorer needed!