Early Charm Results @ Belle II

XXVIII Cracow EPIPHANY Conference

Sanjeeda Bharati Das

Malaviya National Institute of Technology Jaipur, India

(On Behalf of the Belle II Collaboration)

Outline

- SuperKEKB & Belle II
- Belle II Vertex Detector
- $D^{0/+}$ lifetime measurements
- *CPV* and charm mixing
- Summary

SuperKEKB

WORLD RECORD: $3.81 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

• Nano beams with the help of super-conducting final focus quadrupoles.

• Luminous region dimensions (x/y/z) at:

Belle II: 10/0.2/250 μm Belle : 100/1/6,000 μm

• Beam spot y size is expected to be decreased to \sim 60 nm.

• Provide effective constraint on the D production vertex.

Design luminosity: $6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

Belle II Detector

Belle II Vertex Detector (VXD)

- The VXD is made up of:
 - Pixel Detector (PXD): 2 Layers of DEPFET
 - Silicon Vertex Detector (SVD): 4 Layers of DSSD
- First layer of PXD is at 1.4 cm from interaction point. Belle 10.2 rd layer of PXD is not complete.
- 2x better impact parameter resolution which shows up in the decay time distribution of D⁰ meson.

Measurement of D^{0/+} Lifetime

• Decay time is calculated using the displacement between the production and the decay vertices (d), projected along the direction of momentum (p).

$$t = \frac{m_D}{p} \left(\overrightarrow{d} \cdot \hat{p} \right)$$

- At Belle II, the decay vertices are displaced on average by 200 (500) μm for $D^0(D^+)$.
- D lifetime is extracted from fit to (t, σ_t) .

Sample and Selection

- D* tagged $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$ are reconstructed.
- D from B decays are removed with $p_{cms}(D^{*+}) > 2.5(2.6)$ GeV/c for $D^0(D^+)$.
- Background is mainly from random combination of particles.
- Binned least squares fit to $D^{0/+}$ mass.
- Signal yield:
 - $\circ \quad D^0 {\longrightarrow} K^{-} \pi^{+} \quad : \quad 171K$
 - $\circ \quad D^+ \longrightarrow K^- \pi^+ \pi^+ : 59K$
- Purity:
 - \circ D⁰ $\to K^-\pi^+$: 99.8%
 - $\circ \quad D^+ \longrightarrow K^- \pi^+ \pi^+ : 90\%$

SB: Side band

Fit to (t, σ_t)

- Unbinned ML fit to (t, σ_t) for candidates in the signal region.
- Only 0.2% background under the signal peak for D⁰:
 - The background is neglected.
 - Systematic assigned.
- For D⁺ background, it is assumed that SB events represent background in signal region.
- PDF: Exponential, convolved with a resolution function (R). R for $D^0(D^+)$ is sum of 2 Gaussians (1 Gaussian).
- *t* resolution ~ 60-70 fs.

Systematic Uncertainties

Source	$ au(D^0)$ [fs]	$ au(D^+)$ [fs]
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10

- Major sources of systematic error:
 - Alignment of the detector:
 - measuring lifetimes using various misaligned MC samples.
 - Background:
 - data-MC disagreement of **t** distribution in side bands.

Results

Phys. Rev. Lett. 127, 211801

$$\tau(D^0) = 410 \pm 1.1 \text{ (stat.)} \pm 0.8 \text{ (syst.) fs}$$

$$\tau(D^+) = 1030.4 \pm 4.7 \text{ (stat.)} \pm 3.1 \text{ (syst.) fs}$$

$$\tau(D^+) / \tau(D^0) = 2.510 \pm 0.013 \text{ (stat.)} \pm 0.007 \text{ (syst.)}$$

- Most precise measurement till date and consistent with previous measurements.
- Precision is still limited by sample size.
- Shows excellent vertexing capability of Belle II.
- <u>Impact:</u> future decay-time-dependent analyses of neutral-meson mixing and mixing-induced CP violation.

Towards measurement of $D_s & \Lambda_c$ lifetime

- First reconstruction of Λ_c and D_s^{\dagger} decays at Belle II.
- D_s^+ , Λ_c and Ω_c lifetime analyses are ongoing.

CPV and charm mixing

Time integrated CPV measurements @ 50 ab⁻¹

- First observation of time integrated CPV in
 - charm was by LHCb in $D^0 \rightarrow K^+K^$ and $D^0 \rightarrow \pi^+\pi^-$ decays.

PRL 122, 211803 (2019)

- Important to look for CPV with other final states to understand origin of CPV.
- Belle II will specially contribute to the decays with neutrals in the final state.
- A_{CP} is expected reach a precision of $o(10^{-3}-10^{-4})$.
- Will also explore CPV measurements with charmed baryons.

Belle Results

Mode	\mathcal{L} (fb ⁻¹)	A_{CP} (%)	Belle II 50 ab ⁻¹
$D^0 ightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03
$D^0 o \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 o \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^0 o K^0_S\pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.02
$D^0 ightarrow K_S^0 K_S^0$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23
$D^0 o K^0_S\eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K^0_S\eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	± 0.13
$D^0 o K^+\pi^-\pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 \to K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ \rightarrow \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
$D^+ o \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ ightarrow K_S^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.02
$D^+ o K_S^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.04
$D_s^+ o K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29
$D_s^+ o K_S^0 K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05

Time integrated CPV (ongoing analyses)

First reconstructions at Belle II. All D^0 channels are D^* tagged.

CP Violation in mixing

- Charm is the only up-type quark that exhibits mixing.
- The eigenstates of the neutral D meson are a mixture of the flavor states:

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$$
$$x = \frac{2(m_1 - m_2)}{\Gamma_1 + \Gamma_2}, \quad y = \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$$

- WS decays provides sensitivity to the mixing.
- No experimental evidence of CPV in mixing till date.
- Measured ratio of WS-to-RS yields is compatible with world average.
- Analysis to measure mixing and CPV in $D^0 \rightarrow K^+\pi^-\pi^0$ is ongoing.

Summary

- World's most precise charm lifetime measurements.
 - Shows excellent vertexing capabilities of the Belle II VXD.
 - <u>Impact:</u> future decay-time-dependent analyses of neutral-meson mixing and mixing-induced CP violation.
- Reconstruction performance is improved as compared to Belle.
- SuperKEKB and Belle II are in great shape:
 - Achieved world record peak luminosity: 3.81 x 10³⁴ cm⁻²s⁻¹.
 - Collected ~268 fb⁻¹ of data.
- Stay tuned for more results!!

Thank you.

Backup Slides

Belle II Performance

Projections of luminosity

- Target scenario: extrapolation from early 2021 run including expected improvements
- Base scenario: conservative extrapolation of SuperKEKB parameters from early 2021 run

Long Shutdown 1 (LS1) is currently scheduled to start January 2023

If SuperKEKB performance indicates that insufficient integrated luminosity will be collected before LS1 or COVID-19 travel restrictions persist, the option exists to postpone the start of LS1 to July 2023